Pokaż uproszczony rekord

dc.contributor.authorZakrzewski, Michał
dc.contributor.authorŻołądek, Henryk
dc.contributor.editorKrasiński, Tadeusz
dc.contributor.editorSpodzieja, Stanisław
dc.date.accessioned2017-12-13T11:02:44Z
dc.date.available2017-12-13T11:02:44Z
dc.date.issued2013
dc.identifier.citationZakrzewski M., Żołądek H, Multiple zeta values and the WKB, [in:] Krasiński T., Spodzieja S. (eds.), Analytic and Algebraic Geometry, Łódź University Press, Łódź 2013, s. 155-202, doi: 10.18778/7969-017-6.12pl_PL
dc.identifier.isbn978-83-7969-017-6
dc.identifier.urihttp://hdl.handle.net/11089/23613
dc.description.abstractThe multiple zeta values ζ(d1, . . . , dr ) are natural generalizations of the values ζ(d) of the Riemann zeta functions at integers d. They have many applications, e.g. in knot theory and in quantum physics. It turns out that some generating functions for the multiple zeta values, like fd(x) = 1 − ζ(d)xd + ζ(d, d)x2d − . . . , are related with hypergeometric equations. More precisely, fd(x) is the value at t = 1 of some hypergeometric series dFd−1(t) = 1 − x t + . . ., a solution to a hypergeometric equation of degree d with parameter x. Our idea is to represent fd(x) as some connection coeffi- cient between certain standard bases of solutions near t = 0 and near t = 1. Moreover, we assume that |x| is large. For large complex x the above basic solutions are represented in terms of so-called WKB solutions. The series which define the WKB solutions are divergent and are subject to so-called Stokes phenomenon. Anyway it is possible to treat them rigorously. In the paper we review our results about application of the WKB method to the generating functions f x), focusing on the cases d = 2 and d = 3.pl_PL
dc.language.isoenpl_PL
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl_PL
dc.relation.ispartofKrasiński T., Spodzieja S. (eds.), Analytic and Algebraic Geometry, Łódź University Press, Łódź 2013;
dc.rightsUznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/pl/*
dc.titleMultiple zeta values and the WKB methodpl_PL
dc.typeBook chapterpl_PL
dc.rights.holder© Copyright by University of Łódź, Łódź 2013pl_PL
dc.page.number155-202pl_PL
dc.contributor.authorAffiliationInstitute of Mathematics, Jan Kochanowski University, ul. Świętokrzyska 15, 25-406 Kielcepl_PL
dc.contributor.authorAffiliationInstitute of Mathematics, University of Warsaw, ul. Banacha 2, 02-097 Warsawpl_PL
dc.referencesT. Aoki, Y. Ohno and N. Wakabayashi, On generating functions of multiple zeta values and generalized hypergeometric functions, Manuscripta Math. 134 (2011), 139–155.pl_PL
dc.referencesR. Apéry, Irrationabilité de ζ(2) et ζ(3), Asterisque 61 (1979), 11–13.pl_PL
dc.referencesW. Balser, “From divergent power series to analytic functions”, Lect. Notes in Math., v. 1582, Springer–Verlag, Berlin, 1994.pl_PL
dc.referencesG. Bateman and A. Erdelyi, "Higher transcendental functions", v. 1, Mc Graw Hill Book C., New York, 1953.pl_PL
dc.referencesH. L. Berk, W. M. Nevins and K. V. Robert, New Stokers' line in WKB theory, J. Math. Phys. 23 (1982), 988-1002.pl_PL
dc.referencesF. Beukers, D. Bornawell and G. Heckman, Siegel normality, Ann. Math. 127 (1988), 279-308.pl_PL
dc.referencesF. Beukers and G. Heckman, Monodromy for the hypergeometric function nFn-1, Invent. Math. 95 (1993). 45-65.pl_PL
dc.referencesF. Beukers and C. A. M. Peters, A family of K3 surfaces and ζ (3), J. reine angew. Math. 351 (1984) 42-54.pl_PL
dc.referencesG. D. Birkhoff, On the asymptotic character of the solutions of certain differential equations containing a parameter, Trans. Amer. Math. Soc. 9 (1908), 219-230.pl_PL
dc.referencesJ. M. Borwein, D. M. Bradley and D. J. Broadhurst, Evaluations of k-fold Euler/Zagier sums: A compendium of results for arbitrary k, Electronic J. Combinat. 4 (1997), No2, #R5.pl_PL
dc.referencesJ. M. Borwein, D. M. Bradley, D. J. Broadhurst and P. Lisoněk, Combinatorial aspects of multiple zeta values, Electronic J. Combinat. 5 (1998), #R38.pl_PL
dc.referencesL. Brillouin, La mecanique ondulatoire de Schrödinger: une méthode générale de resolution par approximations successives, C. R. Acad. Sci. Paris 183 (1926), 24-26.pl_PL
dc.referencesF. Brown, Mixed Tate motives over Z, Annals Math. 175 (2012), 949-976.pl_PL
dc.referencesJ. Cresson, S. Fischler and T. Rivoal, Séries hypergéométriques multiples et polyzêtas, Bull. Soc. Math. France 136 (2008), 97-145.pl_PL
dc.referencesE. Delabaere and F. Pham, Resurgent methods in semi-classical asymptotic, Ann. Inst. H. Poincaré. Phys. Théoret. 71 (1999), 1-94.pl_PL
dc.referencesA. Duval et C. Mitschi, Matrices de Stokes et groupe de Galois des équations hypergéométriques conuentes generalizes, Pacific J. Math. 138 (1989), 25-56.pl_PL
dc.referencesM. B. Fedoryuk, "Asymptotic analysis. Linear ordinary differential equations", Springer-Verlag, Berlin, 1993 [Russian: "Asymptotic methods for linear ordinary differential equations", Nauka, Moscow, 1983].pl_PL
dc.referencesA. A. Glyutsuk, Stokes operators via limit monodromy of generic perturbation, J. Dynam. Control Syst. 5 (1999), 101-135.pl_PL
dc.referencesA. Gray and G. B. Mathews, "A treatise on Bessel functions and their applications to physics", McMillan, London, 1931.pl_PL
dc.referencesJ. M. A. Heading, "An introduction to phase-integral methods", J. Wiley & Sons, New York, 1977.pl_PL
dc.referencesM. E. Hoffman, The algebra of multiple harmonic series, J. Algebra 194 (1997), 477-495.pl_PL
dc.referencesM. Huttner, Riemann P-scheme, monodromy and diophantine approximations, Indagationes Math. 23 (2012), 522-546.pl_PL
dc.referencesN. M. Katz, On the calculation of some differential Galois groups, Invent. Math. 87 (1987), 13-61.pl_PL
dc.referencesN. M. Katz, "Exponential sums and differential equations", Annals of Math. Studies, v. 124, Princeton University Press, Princeton, 1990.pl_PL
dc.referencesM. Kontsevich and D. Zagier, Periods, in: "Mathematics unlimited - 2001 and beyond", Springer-Verlag, Berlin, 2001, pp. 771-808.pl_PL
dc.referencesH. A. Kramers, Wellenmechanik und halbzählige Quantisierung, Zeit. Physik 39 (1926), 828-840.pl_PL
dc.referencesZ.-H. Li, Sum of multiple zeta values of fixed weight, depth and i-height, Math. Zeitschrift 258 (2008), 133-142.pl_PL
dc.referencesB. H. Lian and S.-T. Yau, Arithmetic properties of mirror map and quantum coupling, Commun. Math. Phys. 176 (1996), 163-291.pl_PL
dc.referencesC. S. Meijer, On the G-functions, Indag. Mathem. 8 (1946), I: 124-134; II: 213-225; III: 312-324; IV: 391-400; V: 468-475; VI: 595-602; VII: 661-670; VIII: 713-723.pl_PL
dc.referencesH. N. Minh, M. Petitot and J. van der Hoeven, Shuffle algebra and polylogarithms, in: "Formal Series and Algebraic Combinatorics, Toronto 98", Discrete Math. 225 (2000), 217-230.pl_PL
dc.referencesC. Mitschi, Differential Galois groups of conuent generalized hypergeometric equations: an approach using Stokes multipliers, Pacific J. Math. 176 (1996), 365-405.pl_PL
dc.referencesY. Ohno and D. Zagier, Multiple zeta values of fixed weight, depth and weight, Indag. Mathem., N. S. 12 (2001), 483-487.pl_PL
dc.referencesA. van der Poorten, A proof that Euler missed... Apéry's proof of the irrationality of ζ (3), Math. Intelligencer 1 (1978/79), No 4, 195-2003.pl_PL
dc.referencesJ.-P. Ramis, "Séries divergentes et théories asymptotiques", Panoramas et Synthesèses, Soc. Math. de France, 1993.pl_PL
dc.referencesL. Schiff, `Quantum mechanics', Mc Graw Hill Book C., New York, 1968.pl_PL
dc.referencesG. G. Stokes, On the discontinuity of arbitrary constant that appear as multipliers of semi-convergent series, Acta Math. 26 (1902), 393-397.pl_PL
dc.referencesW. Wasow, "Asymptotic expansions for ordinary differential equations", J. Wiley & Sons, New York, 1965.pl_PL
dc.referencesG.Wentzel, Eine Verangemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik, Zeit. Physik 38 (1926), 518.pl_PL
dc.referencesD. Zagier, Values of zeta function and their applications, in: "First European Congress of Mathematicians", v. 2, Progress in Math. 120, Birkhaüser, Basel, 1994, pp. 497-512.pl_PL
dc.referencesD. Zagier, Evaluation of the multiple zeta values ζ (2;… ; 2; 3; 2; …; 2); Annals Math. 175 (2012), 977-1000.pl_PL
dc.referencesM. Zakrzewski and H. Żołądek, Linear differential equations and multiple zeta values. I. Zeta(2), Fundam. Math. 210 (2010), 207-242.pl_PL
dc.referencesM. Zakrzewski and H. Żołądek, Linear differential equations and multiple zeta values. II. A generalization of the WKB method, J. Math. Anal. Appl. 383 (2011), 55-70.pl_PL
dc.referencesM. Zakrzewski and H. Żołądek, Linear differential equations and multiple zeta values. II. Zeta(3), J. Math. Phys. 53 (2012), 013507.pl_PL
dc.referencesJ. Zhao, On a conjecture of Borwein, Bradley and Broadhurst, J. reine angew. Math. 639 (2010), 223-233.pl_PL
dc.referencesH. Żołądek, The extended monodromy group and Liouvillian first integrals, J. Dynam. Control Syst. 4 (1998), 1-28.pl_PL
dc.referencesH. Żołądek, Note on multiple zeta-values, Bull. Acad. Ştiinţe Rep. Mold. Matem. 41pl_PL
dc.referencesH. Żołądek, Note on multiple zeta-values, Bull. Acad. Ştiinţe Rep. Mold. Matem. 41 (2003), 78-82.pl_PL
dc.referencesH. Żołądek, "The monodromy group", Birkhäuser, Basel, 2006.pl_PL
dc.referencesV. V. Zudilin, Algebraic relations for multiple zeta values, Russ. Math. Surveys 58 (2003), 1-29.pl_PL
dc.referencesV. V. Zudilin, Arithmetic hypergeometric series, Russ. Math. Surveys 66 (2011), 369-420.pl_PL
dc.contributor.authorEmailzakrzewski@mimuw.edu.plpl_PL
dc.contributor.authorEmailzoladek@mimuw.edu.plpl_PL
dc.identifier.doi10.18778/7969-017-6.12


Pliki tej pozycji

Thumbnail
Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska