dc.contributor.author | Zakrzewski, Michał | |
dc.contributor.author | Żołądek, Henryk | |
dc.contributor.editor | Krasiński, Tadeusz | |
dc.contributor.editor | Spodzieja, Stanisław | |
dc.date.accessioned | 2017-12-13T11:02:44Z | |
dc.date.available | 2017-12-13T11:02:44Z | |
dc.date.issued | 2013 | |
dc.identifier.citation | Zakrzewski M., Żołądek H, Multiple zeta values and the WKB, [in:] Krasiński T., Spodzieja S. (eds.), Analytic and Algebraic Geometry, Łódź University Press, Łódź 2013, s. 155-202, doi: 10.18778/7969-017-6.12 | pl_PL |
dc.identifier.isbn | 978-83-7969-017-6 | |
dc.identifier.uri | http://hdl.handle.net/11089/23613 | |
dc.description.abstract | The multiple zeta values ζ(d1, . . . , dr ) are natural generalizations
of the values ζ(d) of the Riemann zeta functions at integers d. They have many applications, e.g. in knot theory and in quantum physics. It turns out that some generating functions for the multiple zeta values, like fd(x) = 1 − ζ(d)xd + ζ(d, d)x2d − . . . , are related with hypergeometric equations. More precisely, fd(x) is the value at t = 1 of some hypergeometric series dFd−1(t) = 1 − x t + . . ., a solution to a hypergeometric equation of degree d with parameter x. Our idea is to represent fd(x) as some connection coeffi- cient between certain standard bases of solutions near t = 0 and near t = 1. Moreover, we assume that |x| is large. For large complex x the above basic solutions are represented in terms of so-called WKB solutions. The series which define the WKB solutions are divergent and are subject to so-called Stokes phenomenon. Anyway it is possible to treat them rigorously. In the paper we review our results about application of the WKB method to the generating functions
f
x), focusing on the cases d = 2 and d = 3. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl_PL |
dc.relation.ispartof | Krasiński T., Spodzieja S. (eds.), Analytic and Algebraic Geometry, Łódź University Press, Łódź 2013; | |
dc.rights | Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/pl/ | * |
dc.title | Multiple zeta values and the WKB method | pl_PL |
dc.type | Book chapter | pl_PL |
dc.rights.holder | © Copyright by University of Łódź, Łódź 2013 | pl_PL |
dc.page.number | 155-202 | pl_PL |
dc.contributor.authorAffiliation | Institute of Mathematics, Jan Kochanowski University, ul. Świętokrzyska 15, 25-406 Kielce | pl_PL |
dc.contributor.authorAffiliation | Institute of Mathematics, University of Warsaw, ul. Banacha 2, 02-097 Warsaw | pl_PL |
dc.references | T. Aoki, Y. Ohno and N. Wakabayashi, On generating functions of multiple zeta values and generalized hypergeometric functions, Manuscripta Math. 134 (2011), 139–155. | pl_PL |
dc.references | R. Apéry, Irrationabilité de ζ(2) et ζ(3), Asterisque 61 (1979), 11–13. | pl_PL |
dc.references | W. Balser, “From divergent power series to analytic functions”, Lect. Notes in Math., v. 1582, Springer–Verlag, Berlin, 1994. | pl_PL |
dc.references | G. Bateman and A. Erdelyi, "Higher transcendental functions", v. 1, Mc Graw Hill Book C., New York, 1953. | pl_PL |
dc.references | H. L. Berk, W. M. Nevins and K. V. Robert, New Stokers' line in WKB theory, J. Math. Phys. 23 (1982), 988-1002. | pl_PL |
dc.references | F. Beukers, D. Bornawell and G. Heckman, Siegel normality, Ann. Math. 127 (1988), 279-308. | pl_PL |
dc.references | F. Beukers and G. Heckman, Monodromy for the hypergeometric function nFn-1, Invent. Math. 95 (1993). 45-65. | pl_PL |
dc.references | F. Beukers and C. A. M. Peters, A family of K3 surfaces and ζ (3), J. reine angew. Math. 351 (1984) 42-54. | pl_PL |
dc.references | G. D. Birkhoff, On the asymptotic character of the solutions of certain differential equations containing a parameter, Trans. Amer. Math. Soc. 9 (1908), 219-230. | pl_PL |
dc.references | J. M. Borwein, D. M. Bradley and D. J. Broadhurst, Evaluations of k-fold Euler/Zagier sums: A compendium of results for arbitrary k, Electronic J. Combinat. 4 (1997), No2, #R5. | pl_PL |
dc.references | J. M. Borwein, D. M. Bradley, D. J. Broadhurst and P. Lisoněk, Combinatorial aspects of multiple zeta values, Electronic J. Combinat. 5 (1998), #R38. | pl_PL |
dc.references | L. Brillouin, La mecanique ondulatoire de Schrödinger: une méthode générale de resolution par approximations successives, C. R. Acad. Sci. Paris 183 (1926), 24-26. | pl_PL |
dc.references | F. Brown, Mixed Tate motives over Z, Annals Math. 175 (2012), 949-976. | pl_PL |
dc.references | J. Cresson, S. Fischler and T. Rivoal, Séries hypergéométriques multiples et polyzêtas, Bull. Soc. Math. France 136 (2008), 97-145. | pl_PL |
dc.references | E. Delabaere and F. Pham, Resurgent methods in semi-classical asymptotic, Ann. Inst. H. Poincaré. Phys. Théoret. 71 (1999), 1-94. | pl_PL |
dc.references | A. Duval et C. Mitschi, Matrices de Stokes et groupe de Galois des équations hypergéométriques conuentes generalizes, Pacific J. Math. 138 (1989), 25-56. | pl_PL |
dc.references | M. B. Fedoryuk, "Asymptotic analysis. Linear ordinary differential equations", Springer-Verlag, Berlin, 1993 [Russian: "Asymptotic methods for linear ordinary differential equations", Nauka, Moscow, 1983]. | pl_PL |
dc.references | A. A. Glyutsuk, Stokes operators via limit monodromy of generic perturbation, J. Dynam. Control Syst. 5 (1999), 101-135. | pl_PL |
dc.references | A. Gray and G. B. Mathews, "A treatise on Bessel functions and their applications to physics", McMillan, London, 1931. | pl_PL |
dc.references | J. M. A. Heading, "An introduction to phase-integral methods", J. Wiley & Sons, New York, 1977. | pl_PL |
dc.references | M. E. Hoffman, The algebra of multiple harmonic series, J. Algebra 194 (1997), 477-495. | pl_PL |
dc.references | M. Huttner, Riemann P-scheme, monodromy and diophantine approximations, Indagationes Math. 23 (2012), 522-546. | pl_PL |
dc.references | N. M. Katz, On the calculation of some differential Galois groups, Invent. Math. 87 (1987), 13-61. | pl_PL |
dc.references | N. M. Katz, "Exponential sums and differential equations", Annals of Math. Studies, v. 124, Princeton University Press, Princeton, 1990. | pl_PL |
dc.references | M. Kontsevich and D. Zagier, Periods, in: "Mathematics unlimited - 2001 and beyond", Springer-Verlag, Berlin, 2001, pp. 771-808. | pl_PL |
dc.references | H. A. Kramers, Wellenmechanik und halbzählige Quantisierung, Zeit. Physik 39 (1926), 828-840. | pl_PL |
dc.references | Z.-H. Li, Sum of multiple zeta values of fixed weight, depth and i-height, Math. Zeitschrift 258 (2008), 133-142. | pl_PL |
dc.references | B. H. Lian and S.-T. Yau, Arithmetic properties of mirror map and quantum coupling, Commun. Math. Phys. 176 (1996), 163-291. | pl_PL |
dc.references | C. S. Meijer, On the G-functions, Indag. Mathem. 8 (1946), I: 124-134; II: 213-225; III: 312-324; IV: 391-400; V: 468-475; VI: 595-602; VII: 661-670; VIII: 713-723. | pl_PL |
dc.references | H. N. Minh, M. Petitot and J. van der Hoeven, Shuffle algebra and polylogarithms, in: "Formal Series and Algebraic Combinatorics, Toronto 98", Discrete Math. 225 (2000), 217-230. | pl_PL |
dc.references | C. Mitschi, Differential Galois groups of conuent generalized hypergeometric equations: an approach using Stokes multipliers, Pacific J. Math. 176 (1996), 365-405. | pl_PL |
dc.references | Y. Ohno and D. Zagier, Multiple zeta values of fixed weight, depth and weight, Indag. Mathem., N. S. 12 (2001), 483-487. | pl_PL |
dc.references | A. van der Poorten, A proof that Euler missed... Apéry's proof of the irrationality of ζ (3), Math. Intelligencer 1 (1978/79), No 4, 195-2003. | pl_PL |
dc.references | J.-P. Ramis, "Séries divergentes et théories asymptotiques", Panoramas et Synthesèses, Soc. Math. de France, 1993. | pl_PL |
dc.references | L. Schiff, `Quantum mechanics', Mc Graw Hill Book C., New York, 1968. | pl_PL |
dc.references | G. G. Stokes, On the discontinuity of arbitrary constant that appear as multipliers of semi-convergent series, Acta Math. 26 (1902), 393-397. | pl_PL |
dc.references | W. Wasow, "Asymptotic expansions for ordinary differential equations", J. Wiley & Sons, New York, 1965. | pl_PL |
dc.references | G.Wentzel, Eine Verangemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik, Zeit. Physik 38 (1926), 518. | pl_PL |
dc.references | D. Zagier, Values of zeta function and their applications, in: "First European Congress of Mathematicians", v. 2, Progress in Math. 120, Birkhaüser, Basel, 1994, pp. 497-512. | pl_PL |
dc.references | D. Zagier, Evaluation of the multiple zeta values ζ (2;… ; 2; 3; 2; …; 2); Annals Math. 175 (2012), 977-1000. | pl_PL |
dc.references | M. Zakrzewski and H. Żołądek, Linear differential equations and multiple zeta values. I. Zeta(2), Fundam. Math. 210 (2010), 207-242. | pl_PL |
dc.references | M. Zakrzewski and H. Żołądek, Linear differential equations and multiple zeta values. II. A generalization of the WKB method, J. Math. Anal. Appl. 383 (2011), 55-70. | pl_PL |
dc.references | M. Zakrzewski and H. Żołądek, Linear differential equations and multiple zeta values. II. Zeta(3), J. Math. Phys. 53 (2012), 013507. | pl_PL |
dc.references | J. Zhao, On a conjecture of Borwein, Bradley and Broadhurst, J. reine angew. Math. 639 (2010), 223-233. | pl_PL |
dc.references | H. Żołądek, The extended monodromy group and Liouvillian first integrals, J. Dynam. Control Syst. 4 (1998), 1-28. | pl_PL |
dc.references | H. Żołądek, Note on multiple zeta-values, Bull. Acad. Ştiinţe Rep. Mold. Matem. 41 | pl_PL |
dc.references | H. Żołądek, Note on multiple zeta-values, Bull. Acad. Ştiinţe Rep. Mold. Matem. 41 (2003), 78-82. | pl_PL |
dc.references | H. Żołądek, "The monodromy group", Birkhäuser, Basel, 2006. | pl_PL |
dc.references | V. V. Zudilin, Algebraic relations for multiple zeta values, Russ. Math. Surveys 58 (2003), 1-29. | pl_PL |
dc.references | V. V. Zudilin, Arithmetic hypergeometric series, Russ. Math. Surveys 66 (2011), 369-420. | pl_PL |
dc.contributor.authorEmail | zakrzewski@mimuw.edu.pl | pl_PL |
dc.contributor.authorEmail | zoladek@mimuw.edu.pl | pl_PL |
dc.identifier.doi | 10.18778/7969-017-6.12 | |