dc.contributor.author | Brzostowski, Szymon | |
dc.contributor.author | Krasinski, Tadeusz | |
dc.contributor.author | Walewska, Justyna | |
dc.contributor.editor | Krasiński, Tadeusz | |
dc.contributor.editor | Spodzieja, Stanisław | |
dc.date.accessioned | 2017-12-28T08:36:39Z | |
dc.date.available | 2017-12-28T08:36:39Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | Brzostowski S., Krasiński T., Walewska J., A short proof that equisingular plane curve singularities are topologically equivalent, [in:] Krasiński T., Spodzieja S. (eds), Analytic and Algebraic Geometry 2, Łódź University Press, Łódź 2017, p. 37-49, doi: 10.18778/8088-922-4.09 | pl_PL |
dc.identifier.isbn | 978-83-8088-922-4 | |
dc.identifier.uri | http://hdl.handle.net/11089/23771 | |
dc.description.abstract | We prove that if two plane curve singularities are equisingular, then they are topologically equivalent. The method we will use is P. Fortuny Ayuso’s who proved this result for irreducible plane curve singularities. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Łódź University Press | pl_PL |
dc.relation.ispartof | Krasiński T., Spodzieja S. (eds), Analytic and Algebraic Geometry 2, Łódź University Press, Łódź 2017; | |
dc.rights | Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/pl/ | * |
dc.title | A short proof that equisingular plane curve singularities are topologically equivalent | pl_PL |
dc.type | Book chapter | pl_PL |
dc.rights.holder | © Copyright by Authors, Łódź 2017; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2017 | pl_PL |
dc.page.number | 37-49 | pl_PL |
dc.contributor.authorAffiliation | Faculty of Mathematics and Computer Science, University of Łódź, ul. Banacha 22, 90-238 Łódź, Poland | pl_PL |
dc.identifier.eisbn | 978-83-8088-923-1 | |
dc.references | K. Brauner, Das Verhalten der Funktionen in der Umgebung ihrer Verzweigungsstellen, Abh. Math. Sem. Univ. Hamburg 6(1) (1928), 1–55. | pl_PL |
dc.references | E. Brieskorn and H. Knörrer, Plane algebraic curves, Birkhäuser Verlag, Basel, 1986. Translated from the German by John Stillwell. | pl_PL |
dc.references | W. Burau, Kennzeichnung der Schlauchknoten, Abh. Math. Sem. Univ. Hamburg 9(1) (1933), 125–133. | pl_PL |
dc.references | W. Burau, Kennzeichnung der Schlauchverkettungen, Abh. Math. Sem. Univ. Hamburg, 10(1) (1934), 285–297. | pl_PL |
dc.references | E. Casas-Alvero, Singularities of plane curves, volume 276 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2000. | pl_PL |
dc.references | T. de Jong and G. Pfister, Local analytic geometry, Advanced Lectures in Mathematics. Friedr. Vieweg & Sohn, Braunschweig, 2000, Basic theory and applications. | pl_PL |
dc.references | A. Fernandes, J. E. Sampaio, and J. P. Silva, Hölder equivalence of complex analytic curve singularities, ArXiv e-prints, April 2017. | pl_PL |
dc.references | P. Fortuny Ayuso, A short proof that equisingular branches are isotopic, ArXiv e-prints, March 2017. | pl_PL |
dc.references | E. Kähler, Über die Verzweigung einer algebraischen Funktion zweier Veränderlichen in der Umgebung einer singulären Stelle, Math. Z. 30(1) (1929), 188–204. | pl_PL |
dc.references | T. Krasiński, Curves and knots I. Torus knots of first order, In XXXII Conference and Workshop “Analytic and Algebraic Geometry”, 23–45. University of Łódz Press, 2011, (in Polish). | pl_PL |
dc.references | T. Krasiński, Curves and knots II. Torus knots of higher order, In XXXIII Conference and Workshop “Analytic and Algebraic Geometry”, 33–49. University of Łódz Press, 2012, (in Polish). | pl_PL |
dc.references | T. Krasiński, Curves and knots III. Knots of analytic irreducible curves, In XXXIV Conference and Workshop “Analytic and Algebraic Geometry”, 15–25. University of Łódz Press, 2013, (in Polish). | pl_PL |
dc.references | S. Łojasiewicz, Geometric desingularization of curves in manifolds, In Analytic and Algebraic Geometry, 11–32. Faculty of Mathematics and Computer Science. University of Łódz, 2013. Translated from the Polish by T. Krasiński. | pl_PL |
dc.references | W.D. Neumann and A. Pichon, Lipschitz geometry of complex curves, J. Singul., 10 (2014), 225–234. | pl_PL |
dc.references | C.T.C. Wall, Singular points of plane curves, volume 63 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 2004. | pl_PL |
dc.contributor.authorEmail | brzosts@math.uni.lodz.pl | pl_PL |
dc.contributor.authorEmail | krasinsk@uni.lodz.pl | pl_PL |
dc.contributor.authorEmail | walewska@math.uni.lodz.pl | pl_PL |
dc.identifier.doi | 10.18778/8088-922-4.09 | |