Pokaż uproszczony rekord

dc.contributor.authorKucharz, Wojciech
dc.contributor.authorKurdyka, Krzysztof
dc.contributor.editorKrasiński, Tadeusz
dc.contributor.editorSpodzieja, Stanisław
dc.date.accessioned2017-12-28T09:11:16Z
dc.date.available2017-12-28T09:11:16Z
dc.date.issued2017
dc.identifier.citationKucharz W., Kurdyka K., Rationality of semialgebraic functions, [in:] Krasiński T., Spodzieja S. (eds), Analytic and Algebraic Geometry 2, Łódź University Press, Łódź 2017, p. 85-96, doi: 10.18778/8088-922-4.14pl_PL
dc.identifier.isbn978-83-8088-922-4
dc.identifier.urihttp://hdl.handle.net/11089/23776
dc.description.abstractLet X be an algebraic subset of Rⁿ, and ƒ: X → R a semialgebraic function. We prove that if ƒ is continuous rational on each curve C ⊂ X then: 1) ƒ is arc-analytic, 2) ƒ is continuous rational on X. As a consequence we obtain a characterization of hereditarily rational functions recently studied by J. Kollár and K. Nowak.pl_PL
dc.language.isoenpl_PL
dc.publisherŁódź University Presspl_PL
dc.relation.ispartofKrasiński T., Spodzieja S. (eds), Analytic and Algebraic Geometry 2, Łódź University Press, Łódź 2017;
dc.rightsUznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/pl/*
dc.titleRationality of semialgebraic functionspl_PL
dc.typeBook chapterpl_PL
dc.rights.holder© Copyright by Authors, Łódź 2017; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2017pl_PL
dc.page.number85-96pl_PL
dc.contributor.authorAffiliationInstitute of Mathematics, Faculty of Mathematics and Computer Science, Jagiellonian University, Łojasiewicza 6, 30-348 Kraków, Polandpl_PL
dc.contributor.authorAffiliationLaboratoire de Mathématiques (LAMA), UMR 5127 CNRS Université Savoie Mont Blanc, Campus Scientifique, 73 376 Le Bourget-du-Lac Cedex, Francepl_PL
dc.identifier.eisbn978-83-8088-923-1
dc.referencesE. Bierstone, P. Milman and A. Parusiński, A function which is arc-analytic but not continuous, Proc. Amer. Math. Soc. 113, 2 (1991), 419-424.pl_PL
dc.referencesJ. Bochnak, M. Coste and M.-F. Roy, Real algebraic geometry, Springer-Verlag, Berlin, 1998.pl_PL
dc.referencesG. Fichou, J. Huisman, F. Mangolte and J.-Ph. Monnier, Fonctions régulues, J. Reine Angew. Math. 718 (2016), 103-151.pl_PL
dc.referencesJ. Kollár, W. Kucharz and K. Kurdyka, Curve-rational functions, Math. Ann. (2017), DOI 10.1007/s00208-016-1513-z.pl_PL
dc.referencesJ. Kollár and K. Nowak, Continuous rational functions on real and p-adic varieties, Math. Z. 279 (2015), 85-97.pl_PL
dc.referencesW. Kucharz, Rational maps in real algebraic geometry, Adv. Geom. 9 (2009), 517-539.pl_PL
dc.referencesW. Kucharz, Continuous rational maps into the unit 2-sphere, Arch. Math. (Basel) 102 (2014), no. 3, 257-261.pl_PL
dc.referencesW. Kucharz, Approximation by continuous rational maps into spheres, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 8, 1555-1569.pl_PL
dc.referencesW. Kucharz and K. Kurdyka, Stratified-algebraic vector bundles, J. Reine Angew. Math. (2016), DOI 10.1515/crelle-2015-0105.pl_PL
dc.referencesK. Kurdyka, Ensembles semi-algébriques symétriques par arcs, Math. Ann. 281 no. 3 (1988), 445-462.pl_PL
dc.referencesK. Kurdyka, An arc-analytic function with nondiscrete singular set, Ann. Polon. Math. 59, 3 (1994), 251-254.pl_PL
dc.referencesR. Lazarsfeld, Positivity in algebraic geometry. I. Classical setting: line bundles and linear series. Ergebnisse der Mathematik un ihrer Grenzgebiete 3. Folge. A series of Modern Surveys in Mathematics 48. Springer-Verlag, Berlin, 2004.pl_PL
dc.referencesS. Łojasiewicz, Introduction to complex analytic geometry, Birkhuser Verlag, Basel, 1991.pl_PL
dc.referencesJ.-L. Verdier, Stratifications de Whitney et théorème de Bertini-Sard, Invent. Math. 36 (1976), 295-312.pl_PL
dc.contributor.authorEmailWojciech.Kucharz@im.uj.edu.plpl_PL
dc.contributor.authorEmailKrzysztof.Kurdyka@univ-savoie.frpl_PL
dc.identifier.doi10.18778/8088-922-4.14


Pliki tej pozycji

Thumbnail
Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska