On the Simulation Study of Jackknife and Bootstrap MSE Estimators of a Domain Mean Predictor for Fay‑Herriot Model
Abstract
We consider the problem of the estimation of the mean squared error (MSE) of some domain mean predictor for Fay‑Herriot model. In the simulation study we analyze properties of eight MSE estimators including estimators based on the jackknife method (Jiang, Lahiri, Wan, 2002; Chen, Lahiri, 2002; 2003) and parametric bootstrap (Gonzalez‑Manteiga et al., 2008; Buthar, Lahiri, 2003). In the standard Fay‑Herriot model the independence of random effects is assumed, and the biases of the MSE estimators are small for large number of domains. The aim of the paper is the comparison of the properties of MSE estimators for different number of domains and the misspecification of the model due to the correlation of random effects in the simulation study. W artykule rozważany jest problem estymacji błędu średniokwadratowego (MSE) w przypadku predykcji wartości średniej w domenie, w oparciu o model Faya-Herriota. W badaniu symulacyjnym analizowane są własności ośmiu estymatorów MSE, w tym bazujących na metodzie jackknife (Jiang, Lahiri, Wan (2002), Chen, Lahiri (2002, 2003)) oraz parametrycznej metodzie bootstrap (Gonzalez-Manteiga et al. (2008), Buthar, Lahiri (2003)). W modelu Faya-Herriota zakładana jest niezależność składników losowych, a obciążenia estymatorów MSE są małe dla dużej liczby domen. Celem artykułu jest porównanie własności estymatorów MSE przy różnej liczbie domen i błędnej specyfikacji modelu wynikającej z występowania korelacji efektów losowych w badaniu symulacyjnym.
Collections