Show simple item record

dc.contributor.authorWituła, Roman
dc.contributor.authorHetmaniok, Edyta
dc.contributor.authorSłota, Damian
dc.contributor.editorHejduk, Jacek
dc.contributor.editorKowalczyk, Stanisław
dc.contributor.editorPawlak, Ryszard J.
dc.contributor.editorTurowska, Małgorzata
dc.date.accessioned2018-05-14T06:54:17Z
dc.date.available2018-05-14T06:54:17Z
dc.date.issued2015
dc.identifier.citationWituła R., Hetmaniok E., Słota D., New properties of the families of convergent and divergent permutations - Part I, [w:] Modern Real Analysis, J. Hejduk, St. Kowalczyk, R.J. Pawlak, M. Turowska (red.), WUŁ, Łódź 2015, doi: 10.18778/7969-663-5.13.pl_PL
dc.identifier.isbn978-83-7969-663-5
dc.identifier.urihttp://hdl.handle.net/11089/24754
dc.language.isoenpl_PL
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl_PL
dc.relation.ispartofModern Real Analysis;
dc.rightsUznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/pl/*
dc.subjectconvergent permutationspl_PL
dc.subjectdivergent permutationspl_PL
dc.titleNew properties of the families of convergent and divergent permutations - Part Ipl_PL
dc.typeBook chapterpl_PL
dc.rights.holder© Copyright by Authors, Łódź 2015; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2015pl_PL
dc.page.number193-211pl_PL
dc.contributor.authorAffiliationSilesian University of Technology, Institute of Mathematicspl_PL
dc.contributor.authorAffiliationSilesian University of Technology, Institute of Mathematicspl_PL
dc.contributor.authorAffiliationSilesian University of Technology, Institute of Mathematicspl_PL
dc.identifier.eisbn978-83-7969-955-1
dc.referencesR. P. Agnew, Permutations preserving convergence of series, Proc. Amer. Math. Soc. 6 (1955), 563-564.pl_PL
dc.referencesF. Garibay, P. Greenberg and L. Resendis and J. J. Rivaud, The geometry of sumpreserving permutations, Pacific J. Math. 135 (1988), 313-322.pl_PL
dc.referencesU. C. Guha, On Levi’s theorem on rearrangement of convergent series, Indian J. Math. 9 (1967), 91-93.pl_PL
dc.referencesM. C. Hu, J. K. Wang, On rearrangement of series, Bull. Acad. Sinica 7 (1979), 363-376.pl_PL
dc.referencesA. S. Kronrod, On permutation of terms of numerical series, Mat. Sbornik 18(60) no. 2 (1946), 237-280 (in Russian).pl_PL
dc.referencesF. W. Levi, Rearrangement of convergent series, Duke Math. J. 13 (1946), 579-585.pl_PL
dc.referencesL. Maligranda, Scientific activity of Józef Schreier, Wiadomo´sci Matematyczne 50 no. 1 (2014), 45-68 (in Polish).pl_PL
dc.referencesC. St. J. A. Nash-Williams, D. J. White, An application of network flows to rearrangement of series, J. Lond. Math. Soc., II. Ser. 59 (1999), 637-646.pl_PL
dc.referencesN. Obata, A note on certain permutation groups in the infinite dimensional rotation group, Nagoya Math. J. 109 (1988), 91-107.pl_PL
dc.referencesP. A. B. Pleasants, Rearrangements that preserve convergence, J. London Math. Soc. 15 (1977), 134-142.pl_PL
dc.referencesM. Ali Sarigol, Permutation preserving convergence and divergence of series, Bull. Inst. Math. Acad. Sinica 16 (1988), 221-227.pl_PL
dc.referencesM. Ali Sarigol, On absolute equivalence of permutatio functions, Bull. Inst. Math. Acad. Sinica 19 (1991), 69-74.pl_PL
dc.referencesP. Schaefer, Sum-preserving rearrangements of infinite series, Amer. Math. Monthly 88 (1981), 33-40.pl_PL
dc.referencesJ. H. Smith, Rearrangements of conditionally convergent real series with preassigned cycle type, Proc. American Math. Soc. 1 (1975), 167-170.pl_PL
dc.referencesG. S. Stoller, The convergence-preserving rearrangements of real infinite series, Pacific J. Math. 73 (1977), 227-231.pl_PL
dc.referencesR. Wituła, Algebraic and set-theoretical properties of some subsets of families of convergent and divergent permutations, Tatra Mt. Math. Publ. 55 (2013), 27-36.pl_PL
dc.referencesR. Wituła, Convergence - Preserving Functions, Nieuw Arch. voor Wisk 13 (1995), 31-35.pl_PL
dc.referencesR. Wituła, Decompositions of permutations of N with respect to divergent permutations, in Traditional and Present-day Topics in Real Analysis (monograph dedicated to Professor Jan Stanisław Lipiński), Ed. by Małgorzata Filipczak, Elżbieta Wagner- Bojakowska, Łódź University Press, Łódź (2013), 473-490.pl_PL
dc.referencesR.Wituła, On the convergent and divergent permutations, PhD thesis, Katowice 1997 (in Polish).pl_PL
dc.referencesR. Wituła, On the set of limit points of the partial sums of series rearranged by a given divergent permutation, J. Math. Anal. Appl. 362 (2010), 542-552.pl_PL
dc.referencesR. Wituła, Permutations preserving the convergence or the sum of series - a survey, Monograph on the occasion of 100th birthday anniversary of Zygmunt Zahorski, Ed. by Roman Wituła, Damian Słota, Waldemar Hołubowski, Silesian University of Technology Press, Gliwice (2015), 169-190.pl_PL
dc.referencesR. Wituła, Permutation preserving the sum of rearranged real series, Centr. Eur. J. Math. 11, no. 5 (2013), 956-965.pl_PL
dc.referencesR. Wituła, The family F of permutations of N, Math. Slovaca, doi: 10.2478/s12175- 013-0196-0 (in press).pl_PL
dc.referencesR.Wituła, The Riemann Derangement Theorem and divergent permutation, Tatra Mt. Math. Publ. 52 (2012), 75-82.pl_PL
dc.referencesR. Wituła, The Riemann theorem and divergent permutations, Colloq. Math. LXIX (1995), 275-287.pl_PL
dc.referencesR. Wituła, E. Hetmaniok, D. Słota, On commutation properties on the composition relation of convergent and divergent permutations (Part I), Tatra Mt. Math. Publ. 58 (2014), 13-22.pl_PL
dc.referencesR.Wituła, E. Hetmaniok, D. Słota, Some remarks about the group G generated by the family of convergent permutations (sent to Demonstratio Math., currently in review).pl_PL
dc.referencesR. Wituła, D. Słota, The convergence classes of divergent permutations, Demonstratio Math. 42 (2009), 781-796.pl_PL
dc.identifier.doi10.18778/7969-663-5.13


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska
Except where otherwise noted, this item's license is described as Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska