Show simple item record

dc.contributor.authorLoranty, Anna
dc.contributor.authorPawlak, Ryszard J.
dc.contributor.editorFilipczak, Małgorzata
dc.contributor.editorWagner-Bojakowska, Elżbieta
dc.identifier.citationLoranty A., Pawlak R. J., On Baire generalized topological spaces and some problems connected with discrete dynamical systems, [w:] Traditional and present-day topics in real analysis. Dedicated to Professor Jan Stanisław Lipiński, Filipczak M., Wagner-Bojakowska E. (red.), Wydawnictwo Uniwersytetu Łódzkiego, Łódź 2013, s. 151-172, doi: 10.18778/7525-971-1.11pl_PL
dc.description.sponsorshipUdostępnienie publikacji Wydawnictwa Uniwersytetu Łódzkiego finansowane w ramach projektu „Doskonałość naukowa kluczem do doskonałości kształcenia”. Projekt realizowany jest ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Wiedza Edukacja Rozwój; nr umowy: POWER.03.05.00-00-Z092/17-00.pl_PL
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl_PL
dc.relation.ispartofFilipczak M., Wagner-Bojakowska E. (red.), Traditional and present-day topics in real analysis. Dedicated to Professor Jan Stanisław Lipiński, Wydawnictwo Uniwersytetu Łódzkiego, Łódź 2013;
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe*
dc.subjectgeneralized topological spacepl_PL
dc.subject(weak, strong) Baire spacepl_PL
dc.subjectset valued functionpl_PL
dc.subjectgeneralized entropypl_PL
dc.subjectgeneralized Vietoris topologypl_PL
dc.titleOn Baire generalized topological spaces and some problems connected with discrete dynamical systemspl_PL
dc.typeBook chapterpl_PL
dc.contributor.authorAffiliationŁódź University, Faculty of Mathematics and Computer Sciencepl_PL
dc.referencesR. L. Adler, A. G. Konheim, M. H. McAndrew, Topological Entropy, Trans. Amer. Math. Soc. 114 (1965), 309–319.pl_PL
dc.referencesL. Alsedá, J. Llibre, M. Misiurewicz Combinatorial Dynamics and Entropy in Dimension One, World Sci., 1993.pl_PL
dc.referencesJ. Andres, P. Šnyrychowá, P. Szuca, Szarkovskii’s Theorem for connectivity Gδ -relations, Int. J. Bifurkation Chaos 16 (2006), 2377–2393.pl_PL
dc.referencesL. S. Block, W. A. Coppel, Dynamics in One Dimension, Lecture Notes in Math. 1513, Springer, Berlin, 1992.pl_PL
dc.referencesJ. Borsik, Generalized oscillations for generalized continuities, Tatra Mt. Math. Publ. 49 (2011), 119–125.pl_PL
dc.referencesJ. Borsik, Points of generalized continuities, Tatra Mt. Math. Publ. 52 (2012), 153–160.pl_PL
dc.referencesR. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971) 401–414.pl_PL
dc.referencesA. Crannell, M. Frantz, M. LeMasurier, Closed relations and equivalence classes of quasicontinuous functions, Real Anal. Exchange 31(2) (2005/06), 409–423.pl_PL
dc.referencesÁ. Császár, Generalized open sets, Acta Math. Hungar. 75(1-2) (1997), 65–87.pl_PL
dc.referencesÁ. Császár, Generalized topology, generalized continuity, Acta Math. Hungar. 96(4) (2002), 351–357.pl_PL
dc.referencesÁ. Császár, γ-connected sets, Acta Math. Hungar. 101(4) (2003), 273–279.pl_PL
dc.referencesÁ. Császár, Separation axioms for generalized topologies, Acta Math. Hungar. 104(1-2) (2004), 63–69.pl_PL
dc.referencesÁ. Császár, Modyfication of generalized topologies via hereditary classes, Acta Math. Hungar. 115(1-2) (2007), 29–36.pl_PL
dc.referencesÁ. Császár, Normal generalized topologies, Acta Math. Hungar. 115(4) (2007), 309–313.pl_PL
dc.referencesÁ. Császár, Product of generalized topologies, Acta Math. Hungar. 123(1-2) (2009), 127–132.pl_PL
dc.referencesM. Čiklová, Dynamical systems generated by functions with Gδ graphs, Real Anal. Exchange 30 (2004/2005), 617–638.pl_PL
dc.referencesN. Deǧirmenci, S. Kocak, Existence of a dense orbit and topological transitivity: when are they equivalent?, Acta Math. Hungar. 99(3)(2003), 185–187.pl_PL
dc.referencesR. L. Devaney, An Introduction to Chaotic Dynamical Systems, Lecture Notes in Math. 1513, Springer, Berlin, 1992.pl_PL
dc.referencesE. I. Dinaburg, Connection between various entropy characterizations of dynamical systems, Izv. Akad. Nauk SSSR 35 (1971), 324–366 (in Russian).pl_PL
dc.referencesE. Ekici, Generalized hyperconnectedness, Acta Math. Hungar. 133(1-2) (2011), 140–147.pl_PL
dc.referencesR. Gu, Kato’s chaos in set valued discrete systems, Chaos, Solitions & Fractals 31 (2007), 765–771.pl_PL
dc.referencesJ. Guckenheimer, Sensitive dependence to initial conditions for one dimensional maps, Commun. Math. Phys. 70 (1979), 133–160.pl_PL
dc.referencesX. Huang, X. Wen, F. Zeng, Pre-image entropy of nonautonomous dynamical systems, Jrl. Syst. Sci. & Complexity 21 (2008), 441–445.pl_PL
dc.referencesT. Jyothis, J. J. Sunil, m-Compactness in Generalized Topological Spaces, Research Article, Journal of Advanced Studies in Topology 3(3) (2012), 18–22.pl_PL
dc.referencesE. Korczak-Kubiak, A. Loranty, R. J. Pawlak, Baire generalized topological spaces, generalized metric spaces and infinite games, Acta Math. Hungar. 140(3) (2013), 203–231.pl_PL
dc.referencesD. Kwietniak, P. Oprocha, Topological entropy and chaos for maps induced on hyperspaces, Chaos, Solitons & Fractals 33 (2007), 76–86.pl_PL
dc.referencesM. Lampart, P. Raith, Topological entropy for set valued maps, Nonlinear Analysis 73 (2010), 1533–1537.pl_PL
dc.referencesJ. Li, Generalized topologies generated by subbases, Acta Math. Hungar. 114(1-2) (2007), 1–12.pl_PL
dc.referencesJ. Li, J. A. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (1975), 985–992.pl_PL
dc.referencesA. Loranty, R. J. Pawlak, The generalized entropy in the generalized topological spaces, Topology Appl. 159 (2012), 1734–1742.pl_PL
dc.referencesA. Loranty, R. J. Pawlak, On the transitivity of multifunctions and density of orbits in generalized topological spaces, Acta Math. Hungar. 135(1-2) (2012), 56–66.pl_PL
dc.referencesX. Ma, B. Hou, G. Liao, Chaos in hyperspace system, Chaos, Solitions & Fractals 40 (2009), 653–660.pl_PL
dc.referencesJ. -H. Mai,W. -H. Sun, Transitivities of maps of general topological spaces, Topology Appl. 157 (2010), 946–953.pl_PL
dc.referencesM. Marteli, Discrete Dynamical Systems and Chaos, Longman Scientific and Technical, London, 1992.pl_PL
dc.referencesW. K. Min, Generalized continuous functions defined by generalized open sets on generalized topological spaces, Acta Math. Hungar. 128(4) (2010), 299–306.pl_PL
dc.referencesJ. M. Mustafa, μ-semi compactness and μ-semi Lindelöfness in generalized topological spaces, IJPAM 78(4) (2012), 535–541.pl_PL
dc.referencesJ. C. Oxtoby, Measure and Category, Springer - Verlag, New York, 1980.pl_PL
dc.referencesH. Pawlak, R. J. Pawlak, Transityvity, dense orbits and some topologies finer than the natural topology of the unit interval, Tatra Mt. Math. Publ. 35 (2007), 1–12.pl_PL
dc.referencesR. J. Pawlak, A. Loranty, A. Bąkowska, On the topological entropy of continuous and almost continuous functions, Topology Appl. 158 (2011), 2022–2033.pl_PL
dc.referencesZ. Pawlak, Rough sets, International Journal of Computer and Information Science 11(5) (1982), 341-356.pl_PL
dc.referencesZ. Pawlak, Rough classification, International Journal of Man-Machine Studies 20 (1984), 469-483.pl_PL
dc.referencesJ. S. C. Peña, G. S. López, Topological entropy for induced hyperspace maps, Chaos, Solitions & Fractals 28 (2006), 979–982.pl_PL
dc.referencesA. Peris, Transitivity, dense orbit and discontinuous functions, Bull. Belg. Math. Soc. 6 (1999), 391–394.pl_PL
dc.referencesJ. A. Pomykała, Approximation operations in approximation space, Bull. of the Polish Academy of Sci. Mathematics, Theoretical Computer Science 15(9-10) (1987), 653–662.pl_PL
dc.referencesP. L. Power, K. L. Rajak, Some New Concepts of Continuity in Generalized Topological Space, International Journal of Computer Applications 38(5) (2012), 12–17.pl_PL
dc.referencesH. Román-Flores, A note on transitivity in set-valued discrete systems, Chaos, Solitons & Fractals 17 (2003), 99–104.pl_PL
dc.referencesH. Román-Flores, Y. Chalco-Cano, G. Nunes-Silva, Chaos induced by turbulent and erratic functions, IFSA-EUSFLAT (2009), 231–233.pl_PL
dc.referencesM. S. Sarsak, Weak separation axioms in generalized topological spaces, Acta Math. Hungar. 131(1-2) (2011) 110–121.pl_PL
dc.referencesM. S. Sarsak, Weakly μ-compact spaces, Demonstratio Mathematica XLV (4) (2012), 929–938.pl_PL
dc.referencesP. Szuca, Szarkovskii’s theorem holds for some discontinuous functions, Fund. Math. 179 (2003), 27–41.pl_PL
dc.referencesS.Wiggins, Chaotic Transport in Dynamical Systems, Springer-Verlag, Interdisc. Applied Math. vol. 2, New York 1991.pl_PL

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe