Show simple item record

dc.contributor.authorNowak, Monika
dc.contributor.authorSoboń, Adrian
dc.contributor.authorLitwin, Anna
dc.contributor.authorRóżalska, Sylwia
dc.date.accessioned2019-09-09T09:11:07Z
dc.date.available2019-09-09T09:11:07Z
dc.date.issued2019
dc.identifier.citation: Nowak M., Soboń A., Litwin A., Różalska S. 4-n-nonylphenol degradation by the genus Metarhizium with cytochrome P450 involvement. Chemosphere (2019) 220: 324-334 https://doi.org/10.1016/j.chemosphere.2018.12.114pl_PL
dc.identifier.issn0045-6535
dc.identifier.urihttp://hdl.handle.net/11089/30105
dc.description.abstractIn this study, the ability of 4-n-nonylphenol (4-n-NP) elimination by fungal species belonging to the genus Metarhizium was investigated. The occurrence of 35 metabolites from 4-n-NP degradation was confirmed. For the first time, based on the obtained results, the 4-n-NP biodegradation pathway distinctive for the genus Metarhizium was proposed. Principal Component Analysis (PCA) indicated that despite the similar elimination pathway in all the examined Metarhizium species, there are significant differences in the kinetics of degradation of 4-n-NP. Oxidation of the terminal methyl group of the aliphatic chain leading to the formation of carboxylic acids coupled with the removal of terminal carbon is characteristic of M. robertsii and M. guizhouense, whereas metabolites with a hydroxyl group in the distal part of the nonyl chain distinguish M. lepidiotae and M. majus. Additionally, this study verified the participation of cytochrome P450 in the elimination of the xenobiotic by Metarhizium as experimentally proven for M. robertsii.pl_PL
dc.language.isoenpl_PL
dc.publisherElsevierpl_PL
dc.relation.ispartofseriesChemosphere;220
dc.rightsAttribution-NoDerivatives 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/*
dc.subjectMetarhizium sp.pl_PL
dc.subjectnonylphenolpl_PL
dc.subjectbiodegradation pathwaypl_PL
dc.subjectcytochrome P450pl_PL
dc.title4-n-nonylphenol degradation by the genus Metarhizium with cytochrome P450 involvementpl_PL
dc.typeArticlepl_PL
dc.page.number324-334pl_PL
dc.contributor.authorAffiliationFaculty of Biology and Environmental Protection, University of Lodzpl_PL
dc.identifier.eissn1879-1298
dc.referencesBerger, A., Russ, A.S., Schuphan, I., Schmidt, B., 2005. Metabolism of 4-n-nonylphenol by non-modified and CYP1A1- and CYP1A2-transgenic cell cultures of tobacco. Z. Naturforsch. C. 60, 883–892. https://doi.org/10.1515/znc-2005-11-1211pl_PL
dc.referencesBezalel, L., Hadar, Y., Fu, P.P., Freeman, J.P., Cerniglia, C.E., 1996. Metabolism of phenanthrene by the white rot fungus Pleurotus ostreatus. Appl. Environ. Microbiol. 62, 2547–2553.pl_PL
dc.referencesCabana, H., Jones, P.J., Agathos, S.N., 2007. Elimination of endocrine disrupting chemicals using white rot fungi and their lignin modifying enzymes: A review. Eng. Life Sci. 7, 429–456. https://doi.org/10.1002/elsc.200700017pl_PL
dc.referencesCajthaml, T., 2014. Biodegradation of endocrine-disrupting compounds by ligninolytic fungi: mechanisms involved in the degradation. Environ. Microbiol. 17, 4822–4834. https://doi.org/10.1111/1462-2920.12460pl_PL
dc.referencesCerniglia, C.E., Yang, S.K., 1984. Stereoselective metabolism of anthracene and phenanthrene by the fungus Cunninghamella elegans. Appl. Environ. Microbiol. 47, 119–24.pl_PL
dc.referencesChang, B.V., Chiang, B.W., Yuan, S.Y., 2007. Biodegradation of nonylphenol in soil. Chemosphere 66, 1857–1862. https://doi.org/10.1016/J.CHEMOSPHERE.2006.08.029pl_PL
dc.referencesCorvini, P.F.X., Schäffer, A., Schlosser, D., 2006. Microbial degradation of nonylphenol and other alkylphenols—our evolving view. Appl. Microbiol. Biotechnol. 72, 223–243. https://doi.org/10.1007/s00253-006-0476-5pl_PL
dc.referencesDeng, P., Zhong, D., Nan, F., Liu, S., Li, D., Yuan, T., Chen, X., Zheng, J., 2010. Evidence for the bioactivation of 4-nonylphenol to quinone methide and orthobenzoquinone metabolites in human liver microsomes. Chem. Res. Toxicol. 23, 1617–1628. https://doi.org/10.1021/tx100223hpl_PL
dc.referencesDonato, M.T., Jiménez, N., Castell, J. V, Gómez-Lechón, M.J., 2004. Fluorescence-based assays for screening nine cytochrome P450 (P450) activities in intact cells expressing individual human P450 enzymes. Drug Metab. Dispos. 32, 699–706.pl_PL
dc.referencesDurairaj, P., Hur, J.S., Yun, H., 2016. Versatile biocatalysis of fungal cytochrome P450 monooxygenases. Microb. Cell Fact. 15, 125. https://doi.org/10.1186/s12934-016-0523-6pl_PL
dc.referencesHuarte-Bonnet, C., Kumar, S., Saparrat, M.C.N., Girotti, J.R., Santana, M., Hallsworth, J.E., Pedrini, N., 2017. Insights into hydrocarbon assimilation by eurotialean and hypocrealean fungi: roles for CYP52 and CYP53 clans of cytochrome P450 genes. Appl. Biochem. Biotechnol. 184, 1047–1060. https://doi.org/10.1007/s12010-017-2608-zpl_PL
dc.referencesJanicki, T., Długoński, J., Krupiński, M., 2018. Detoxification and simultaneous removal of phenolic xenobiotics and heavy metals with endocrine-disrupting activity by the nonligninolytic fungus Umbelopsis isabellina. J. Hazard. Mater. 360, 661–669. https://doi.org/10.1016/j.jhazmat.2018.08.047pl_PL
dc.referencesJohnson, R.M., Mao, W., Pollock, H.S., Niu, G., Schuler, M.A., Berenbaum, M.R., 2012. Ecologically appropriate xenobiotics induce cytochrome P450s in Apis mellifera. PLoS One 7, e31051. https://doi.org/10.1371/journal.pone.0031051pl_PL
dc.referencesKoumaki, E., Mamais, D., Noutsopoulos, C., 2018. Assessment of the environmental fate of endocrine disrupting chemicals in rivers. Sci. Total Environ. 628, 947–958. https://doi.org/10.1016/j.scitotenv.2018.02.110pl_PL
dc.referencesKrupiński, M., Janicki, T., Pałecz, B., Długoński, J., 2014. Biodegradation and utilization of 4-n-nonylphenol by Aspergillus versicolor as a sole carbon and energy source. J. Hazard. Mater. 280, 678–684. https://doi.org/10.1016/J.JHAZMAT.2014.08.060pl_PL
dc.referencesKrupiński, M., Szewczyk, R., Długoński, J., 2013. Detoxification and elimination of xenoestrogen nonylphenol by the filamentous fungus Aspergillus versicolor. Int.Biodeterior. Biodegradation 82, 59–66. https://doi.org/10.1016/j.ibiod.2013.03.011pl_PL
dc.referencesLin, L., Fang, W., Liao, X., Wang, F., Wei, D., St. Leger, R.J., 2011. The MrCYP52 cytochrome P450 monoxygenase gene of Metarhizium robertsii is important for utilizing insect epicuticular hydrocarbons. PLoS One 6, e28984. https://doi.org/10.1371/journal.pone.0028984pl_PL
dc.referencesLiu, C., Lai, Y., Ouyang, J., Yang, T., Guo, Y., Yang, J., Huang, S., 2017. Influence of nonylphenol and octylphenol exposure on 5-HT, 5-HT transporter, and 5-HT2A receptor. Environ. Sci. Pollut. Res. Int. 24, 8279–8286. https://doi.org/10.1007/s11356-017-8487-6pl_PL
dc.referencesLovett, B., St. Leger, R.J., 2017. The insect pathogens. Microbiol.Spectr. 5, 1–19. https://doi.org/10.1128/microbiolspec.FUNK-0001-2016pl_PL
dc.referencesNykiel-Szymańska, J., Bernat, P., Słaba, M., 2018a. Potential of Trichoderma koningii to eliminate alachlor in the presence of copper ions. Ecotoxicol. Environ. Saf. 162, 1–9. https://doi.org/10.1016/j.ecoenv.2018.06.060pl_PL
dc.referencesNykiel-Szymańska, J., Stolarek, P., Bernat, P., 2018b. Elimination and detoxification of 2,4-D by Umbelopsis isabellina with the involvement of cytochrome P450. Environ. Sci. Pollut. Res. 25, 2738–2743. https://doi.org/10.1007/s11356-017-0571-4pl_PL
dc.referencesRajendran, R.K., Huang, S.L., Lin, C.C., Kirschner, R., 2016. Biodegradation of the endocrine disrupter 4-tertoctylphenol by the yeast strain Candida rugopelliculosa RRKY5 via phenolic ring hydroxylation and alkyl chain oxidation pathways. Bioresour. Technol. 226, 55–64. https://doi.org/10.1016/j.biortech.2016.11.129pl_PL
dc.referencesRóżalska, S., Bernat, P., Michnicki, P., Długoński, J., 2015a. Fungal transformation of 17α-ethinylestradiol in the presence of various concentrations of sodium chloride. Int. Biodeterior. Biodegradation 103, 77–84. https://doi.org/10.1016/J.IBIOD.2015.04.016pl_PL
dc.referencesRóżalska, S., Soboń, A., Pawłowska, J., Wrzosek, M., Długoński, J., 2015b. Biodegradation of nonylphenol by a novel entomopathogenic Metarhizium robertsii strain. Bioresour. Technol. 191, 166–172. https://doi.org/10.1016/j.biortech.2015.05.011pl_PL
dc.referencesRóżalska, S., Szewczyk, R., Długoński, J., 2010. Biodegradation of 4-n-nonylphenol by the non-ligninolytic filamentous fungus Gliocephalotrichum simplex: A proposal of a metabolic pathway. J. Hazard. Mater. 180, 323–331. https://doi.org/10.1016/J.JHAZMAT.2010.04.034pl_PL
dc.referencesSiewiera, P., Różalska, S., Bernat, P., 2017. Efficient dibutyltin (DBT) elimination by the microscopic fungus Metarhizium robertsii under conditions of intensive aeration and ascorbic acid supplementation. Environ. Sci. Pollut. Res. Int. 24, 12118–12127. https://doi.org/10.1007/s11356-017-8764-4pl_PL
dc.referencesSzewczyk, R., Kuśmierska, A., Bernat, P., 2018. Ametryn removal by Metarhizium brunneum: Biodegradation pathway proposal and metabolic background revealed. Chemosphere 190, 174–183. https://doi.org/10.1016/J.CHEMOSPHERE.2017.10.011pl_PL
dc.referencesSzewczyk, R., Soboń, A., Różalska, S., Dzitko, K., Waidelich, D., Długoński, J., 2014. Intracellular proteome expression during 4-n-nonylphenol biodegradation by the filamentous fungus Metarhizium robertsii. Int. Biodeterior. Biodegradation 93, 44–53. https://doi.org/10.1016/J.IBIOD.2014.04.026pl_PL
dc.referencesThibaut, R., Debrauwer, L., Perdu, E., Goksøyr, A., Cravedi, J.P., Arukwe, A., 2002. Regio-specific hydroxylation of nonylphenol and the involvement of CYP2K- and CYP2M-like iso-enzymes in Atlantic salmon (Salmo salar). Aquat. Toxicol. 56, 177–90.pl_PL
dc.referencesVallini, G., Frassinetti, S., D’Andrea, F., Catelani, G., Agnolucci, M., 2001. Biodegradation of 4-(1-nonyl)phenol by axenic cultures of the yeast Candida aquaetextoris: identification of microbial breakdown products and proposal of a possible metabolic pathway. Int. Biodeterior. Biodegradation 47, 133–140. https://doi.org/10.1016/S0964-8305(01)00040-3pl_PL
dc.referencesYang, Z., Shi, Y., Zhang, Y., Cheng, Q., Li, X., Zhao, C., Zhang, D., 2018. Different pathways for 4-n-nonylphenol biodegradation by two Aspergillus strains derived from estuary sediment: Evidence from metabolites determination and key-gene identification. J. Hazard. Mater. 359, 203–212. https://doi.org/10.1016/j.jhazmat.2018.07.058pl_PL
dc.referencesZamaratskaia, G., Zlabek, V., 2009. EROD and MROD as markers of cytochrome P450 1A activities in hepatic microsomes from entire and castrated male pigs. Sensors 9, 2134–2147. https://doi.org/10.3390/s90302134pl_PL
dc.referencesZheng, G., Wang, T., Niu, M., Chen, X., Liu, C., Wang, Y., Chen, T., 2018. Biodegradation of nonylphenol during aerobic composting of sewage sludge under two intermittent aeration treatments in a full-scale plant. Environ. Pollut. 238, 783–791. https://doi.org/10.1016/J.ENVPOL.2018.03.112pl_PL
dc.contributor.authorEmailsylwia.rozalska@biol.uni.lodz.plpl_PL
dc.identifier.doi10.1016/j.chemosphere.2018.12.114


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NoDerivatives 4.0 Międzynarodowe
Except where otherwise noted, this item's license is described as Attribution-NoDerivatives 4.0 Międzynarodowe