dc.contributor.author | Nowak, Monika | |
dc.contributor.author | Soboń, Adrian | |
dc.contributor.author | Litwin, Anna | |
dc.contributor.author | Różalska, Sylwia | |
dc.date.accessioned | 2019-09-09T09:11:07Z | |
dc.date.available | 2019-09-09T09:11:07Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | : Nowak M., Soboń A., Litwin A., Różalska S. 4-n-nonylphenol degradation by the genus Metarhizium with cytochrome P450 involvement. Chemosphere (2019) 220: 324-334 https://doi.org/10.1016/j.chemosphere.2018.12.114 | pl_PL |
dc.identifier.issn | 0045-6535 | |
dc.identifier.uri | http://hdl.handle.net/11089/30105 | |
dc.description.abstract | In this study, the ability of 4-n-nonylphenol (4-n-NP) elimination by fungal species belonging to the genus Metarhizium was investigated. The occurrence of 35 metabolites from 4-n-NP degradation was confirmed. For the first time, based on the obtained results, the 4-n-NP biodegradation pathway distinctive for the genus Metarhizium was proposed. Principal Component Analysis (PCA) indicated that despite the similar elimination pathway in all the examined Metarhizium species, there are significant differences in the kinetics of degradation of 4-n-NP. Oxidation of the terminal methyl group of the aliphatic chain leading to the formation of carboxylic acids coupled with the removal of terminal carbon is characteristic of M. robertsii and M. guizhouense, whereas metabolites with a hydroxyl group in the distal part of the nonyl chain distinguish M. lepidiotae and M. majus. Additionally, this study verified the participation of cytochrome P450 in the elimination of the xenobiotic by Metarhizium as experimentally proven for M. robertsii. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Elsevier | pl_PL |
dc.relation.ispartofseries | Chemosphere;220 | |
dc.rights | Attribution-NoDerivatives 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nd/4.0/ | * |
dc.subject | Metarhizium sp. | pl_PL |
dc.subject | nonylphenol | pl_PL |
dc.subject | biodegradation pathway | pl_PL |
dc.subject | cytochrome P450 | pl_PL |
dc.title | 4-n-nonylphenol degradation by the genus Metarhizium with cytochrome P450 involvement | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 324-334 | pl_PL |
dc.contributor.authorAffiliation | Faculty of Biology and Environmental Protection, University of Lodz | pl_PL |
dc.identifier.eissn | 1879-1298 | |
dc.references | Berger, A., Russ, A.S., Schuphan, I., Schmidt, B., 2005. Metabolism of 4-n-nonylphenol by non-modified and CYP1A1- and CYP1A2-transgenic cell cultures of tobacco. Z. Naturforsch. C. 60, 883–892. https://doi.org/10.1515/znc-2005-11-1211 | pl_PL |
dc.references | Bezalel, L., Hadar, Y., Fu, P.P., Freeman, J.P., Cerniglia, C.E., 1996. Metabolism of phenanthrene by the white rot fungus Pleurotus ostreatus. Appl. Environ. Microbiol. 62, 2547–2553. | pl_PL |
dc.references | Cabana, H., Jones, P.J., Agathos, S.N., 2007. Elimination of endocrine disrupting chemicals using white rot fungi and their lignin modifying enzymes: A review. Eng. Life Sci. 7, 429–456. https://doi.org/10.1002/elsc.200700017 | pl_PL |
dc.references | Cajthaml, T., 2014. Biodegradation of endocrine-disrupting compounds by ligninolytic fungi: mechanisms involved in the degradation. Environ. Microbiol. 17, 4822–4834. https://doi.org/10.1111/1462-2920.12460 | pl_PL |
dc.references | Cerniglia, C.E., Yang, S.K., 1984. Stereoselective metabolism of anthracene and phenanthrene by the fungus Cunninghamella elegans. Appl. Environ. Microbiol. 47, 119–24. | pl_PL |
dc.references | Chang, B.V., Chiang, B.W., Yuan, S.Y., 2007. Biodegradation of nonylphenol in soil. Chemosphere 66, 1857–1862. https://doi.org/10.1016/J.CHEMOSPHERE.2006.08.029 | pl_PL |
dc.references | Corvini, P.F.X., Schäffer, A., Schlosser, D., 2006. Microbial degradation of nonylphenol and other alkylphenols—our evolving view. Appl. Microbiol. Biotechnol. 72, 223–243. https://doi.org/10.1007/s00253-006-0476-5 | pl_PL |
dc.references | Deng, P., Zhong, D., Nan, F., Liu, S., Li, D., Yuan, T., Chen, X., Zheng, J., 2010. Evidence for the bioactivation of 4-nonylphenol to quinone methide and orthobenzoquinone metabolites in human liver microsomes. Chem. Res. Toxicol. 23, 1617–1628. https://doi.org/10.1021/tx100223h | pl_PL |
dc.references | Donato, M.T., Jiménez, N., Castell, J. V, Gómez-Lechón, M.J., 2004. Fluorescence-based assays for screening nine cytochrome P450 (P450) activities in intact cells expressing individual human P450 enzymes. Drug Metab. Dispos. 32, 699–706. | pl_PL |
dc.references | Durairaj, P., Hur, J.S., Yun, H., 2016. Versatile biocatalysis of fungal cytochrome P450 monooxygenases. Microb. Cell Fact. 15, 125. https://doi.org/10.1186/s12934-016-0523-6 | pl_PL |
dc.references | Huarte-Bonnet, C., Kumar, S., Saparrat, M.C.N., Girotti, J.R., Santana, M., Hallsworth, J.E., Pedrini, N., 2017. Insights into hydrocarbon assimilation by eurotialean and hypocrealean fungi: roles for CYP52 and CYP53 clans of cytochrome P450 genes. Appl. Biochem. Biotechnol. 184, 1047–1060. https://doi.org/10.1007/s12010-017-2608-z | pl_PL |
dc.references | Janicki, T., Długoński, J., Krupiński, M., 2018. Detoxification and simultaneous removal of phenolic xenobiotics and heavy metals with endocrine-disrupting activity by the nonligninolytic fungus Umbelopsis isabellina. J. Hazard. Mater. 360, 661–669. https://doi.org/10.1016/j.jhazmat.2018.08.047 | pl_PL |
dc.references | Johnson, R.M., Mao, W., Pollock, H.S., Niu, G., Schuler, M.A., Berenbaum, M.R., 2012. Ecologically appropriate xenobiotics induce cytochrome P450s in Apis mellifera. PLoS One 7, e31051. https://doi.org/10.1371/journal.pone.0031051 | pl_PL |
dc.references | Koumaki, E., Mamais, D., Noutsopoulos, C., 2018. Assessment of the environmental fate of endocrine disrupting chemicals in rivers. Sci. Total Environ. 628, 947–958. https://doi.org/10.1016/j.scitotenv.2018.02.110 | pl_PL |
dc.references | Krupiński, M., Janicki, T., Pałecz, B., Długoński, J., 2014. Biodegradation and utilization of 4-n-nonylphenol by Aspergillus versicolor as a sole carbon and energy source. J. Hazard. Mater. 280, 678–684. https://doi.org/10.1016/J.JHAZMAT.2014.08.060 | pl_PL |
dc.references | Krupiński, M., Szewczyk, R., Długoński, J., 2013. Detoxification and elimination of xenoestrogen nonylphenol by the filamentous fungus Aspergillus versicolor. Int.Biodeterior. Biodegradation 82, 59–66. https://doi.org/10.1016/j.ibiod.2013.03.011 | pl_PL |
dc.references | Lin, L., Fang, W., Liao, X., Wang, F., Wei, D., St. Leger, R.J., 2011. The MrCYP52 cytochrome P450 monoxygenase gene of Metarhizium robertsii is important for utilizing insect epicuticular hydrocarbons. PLoS One 6, e28984. https://doi.org/10.1371/journal.pone.0028984 | pl_PL |
dc.references | Liu, C., Lai, Y., Ouyang, J., Yang, T., Guo, Y., Yang, J., Huang, S., 2017. Influence of nonylphenol and octylphenol exposure on 5-HT, 5-HT transporter, and 5-HT2A receptor. Environ. Sci. Pollut. Res. Int. 24, 8279–8286. https://doi.org/10.1007/s11356-017-8487-6 | pl_PL |
dc.references | Lovett, B., St. Leger, R.J., 2017. The insect pathogens. Microbiol.Spectr. 5, 1–19. https://doi.org/10.1128/microbiolspec.FUNK-0001-2016 | pl_PL |
dc.references | Nykiel-Szymańska, J., Bernat, P., Słaba, M., 2018a. Potential of Trichoderma koningii to eliminate alachlor in the presence of copper ions. Ecotoxicol. Environ. Saf. 162, 1–9. https://doi.org/10.1016/j.ecoenv.2018.06.060 | pl_PL |
dc.references | Nykiel-Szymańska, J., Stolarek, P., Bernat, P., 2018b. Elimination and detoxification of 2,4-D by Umbelopsis isabellina with the involvement of cytochrome P450. Environ. Sci. Pollut. Res. 25, 2738–2743. https://doi.org/10.1007/s11356-017-0571-4 | pl_PL |
dc.references | Rajendran, R.K., Huang, S.L., Lin, C.C., Kirschner, R., 2016. Biodegradation of the endocrine disrupter 4-tertoctylphenol by the yeast strain Candida rugopelliculosa RRKY5 via phenolic ring hydroxylation and alkyl chain oxidation pathways. Bioresour. Technol. 226, 55–64. https://doi.org/10.1016/j.biortech.2016.11.129 | pl_PL |
dc.references | Różalska, S., Bernat, P., Michnicki, P., Długoński, J., 2015a. Fungal transformation of 17α-ethinylestradiol in the presence of various concentrations of sodium chloride. Int. Biodeterior. Biodegradation 103, 77–84. https://doi.org/10.1016/J.IBIOD.2015.04.016 | pl_PL |
dc.references | Różalska, S., Soboń, A., Pawłowska, J., Wrzosek, M., Długoński, J., 2015b. Biodegradation of nonylphenol by a novel entomopathogenic Metarhizium robertsii strain. Bioresour. Technol. 191, 166–172. https://doi.org/10.1016/j.biortech.2015.05.011 | pl_PL |
dc.references | Różalska, S., Szewczyk, R., Długoński, J., 2010. Biodegradation of 4-n-nonylphenol by the non-ligninolytic filamentous fungus Gliocephalotrichum simplex: A proposal of a metabolic pathway. J. Hazard. Mater. 180, 323–331. https://doi.org/10.1016/J.JHAZMAT.2010.04.034 | pl_PL |
dc.references | Siewiera, P., Różalska, S., Bernat, P., 2017. Efficient dibutyltin (DBT) elimination by the microscopic fungus Metarhizium robertsii under conditions of intensive aeration and ascorbic acid supplementation. Environ. Sci. Pollut. Res. Int. 24, 12118–12127. https://doi.org/10.1007/s11356-017-8764-4 | pl_PL |
dc.references | Szewczyk, R., Kuśmierska, A., Bernat, P., 2018. Ametryn removal by Metarhizium brunneum: Biodegradation pathway proposal and metabolic background revealed. Chemosphere 190, 174–183. https://doi.org/10.1016/J.CHEMOSPHERE.2017.10.011 | pl_PL |
dc.references | Szewczyk, R., Soboń, A., Różalska, S., Dzitko, K., Waidelich, D., Długoński, J., 2014. Intracellular proteome expression during 4-n-nonylphenol biodegradation by the filamentous fungus Metarhizium robertsii. Int. Biodeterior. Biodegradation 93, 44–53. https://doi.org/10.1016/J.IBIOD.2014.04.026 | pl_PL |
dc.references | Thibaut, R., Debrauwer, L., Perdu, E., Goksøyr, A., Cravedi, J.P., Arukwe, A., 2002. Regio-specific hydroxylation of nonylphenol and the involvement of CYP2K- and CYP2M-like iso-enzymes in Atlantic salmon (Salmo salar). Aquat. Toxicol. 56, 177–90. | pl_PL |
dc.references | Vallini, G., Frassinetti, S., D’Andrea, F., Catelani, G., Agnolucci, M., 2001. Biodegradation of 4-(1-nonyl)phenol by axenic cultures of the yeast Candida aquaetextoris: identification of microbial breakdown products and proposal of a possible metabolic pathway. Int. Biodeterior. Biodegradation 47, 133–140. https://doi.org/10.1016/S0964-8305(01)00040-3 | pl_PL |
dc.references | Yang, Z., Shi, Y., Zhang, Y., Cheng, Q., Li, X., Zhao, C., Zhang, D., 2018. Different pathways for 4-n-nonylphenol biodegradation by two Aspergillus strains derived from estuary sediment: Evidence from metabolites determination and key-gene identification. J. Hazard. Mater. 359, 203–212. https://doi.org/10.1016/j.jhazmat.2018.07.058 | pl_PL |
dc.references | Zamaratskaia, G., Zlabek, V., 2009. EROD and MROD as markers of cytochrome P450 1A activities in hepatic microsomes from entire and castrated male pigs. Sensors 9, 2134–2147. https://doi.org/10.3390/s90302134 | pl_PL |
dc.references | Zheng, G., Wang, T., Niu, M., Chen, X., Liu, C., Wang, Y., Chen, T., 2018. Biodegradation of nonylphenol during aerobic composting of sewage sludge under two intermittent aeration treatments in a full-scale plant. Environ. Pollut. 238, 783–791. https://doi.org/10.1016/J.ENVPOL.2018.03.112 | pl_PL |
dc.contributor.authorEmail | sylwia.rozalska@biol.uni.lodz.pl | pl_PL |
dc.identifier.doi | 10.1016/j.chemosphere.2018.12.114 | |