dc.contributor.author | Nowicki, Andrzej | |
dc.contributor.editor | Krasiński, Tadeusz | |
dc.contributor.editor | Spodzieja, Stanisław | |
dc.date.accessioned | 2020-01-28T12:11:30Z | |
dc.date.available | 2020-01-28T12:11:30Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Nowicki A., Finitely generated subrings of R[x], in: Analytic and Algebraic Geometry 3, T. Krasiński, S. Spodzieja (red.), WUŁ, Łódź 2019, doi: 10.18778/8142-814-9.13. | pl_PL |
dc.identifier.isbn | 978-83-8142-814-9 | |
dc.identifier.uri | http://hdl.handle.net/11089/31344 | |
dc.description.abstract | In this article all rings and algebras are commutative with identity, and we denote by R[x] the ring of polynomials over a ring R in one variable x. We describe rings R such that all subalgebras of R[x] are finitely generated over R. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl_PL |
dc.relation.ispartof | Analytic and Algebraic Geometry 3; | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.title | Finitely generated subrings of R[x] | pl_PL |
dc.type | Book chapter | pl_PL |
dc.page.number | 179-189 | pl_PL |
dc.contributor.authorAffiliation | Nicolaus Copernicus University, Faculty of Mathematics and Computer Sciences | pl_PL |
dc.identifier.eisbn | 978-83-8142-815-6 | |
dc.references | E. Artin, J. T. Tate, A note of nite ring extensions, J. Math. Soc. Japan, 3(1951) 74-77. | pl_PL |
dc.references | M. F. Atiyah, I. G. Macdonald, Introduction to Commutative Algebra, Addison - Wesley Publishing Company, 1969. | pl_PL |
dc.references | S. Balcerzyk, T. Józe fiak, Commutative Noetherian and Krull Rings, Horwood-PWN, Warszawa 1989. | pl_PL |
dc.references | A. van den Essen, Polynomial automorphisms and the Jacobian Conjecture, Progress in Mathematics 190, 2000. | pl_PL |
dc.references | G. Freudenburg, Algebraic Theory of Locally Nilpotent Derivations, Encyclopaedia of Math- ematical Sciences 136, Springer, Berlin, 2006. | pl_PL |
dc.references | M. Karaś, Elementary proof of nitely generateness of a subring of K[t], Materials of the XXI Conference of Complex Analytic and Algebraic Geometry, Publisher University of Lodz, Lodz (2000), 79-86. | pl_PL |
dc.references | S. Kuroda, The in niteness of the SAGBI bases for certain invariant rings, Osaka J. Math. 39(2002), 665-680. | pl_PL |
dc.references | M. Nagata, Lectures on the Fourteenth Problem of Hilbert, Lecture Notes 31, Tata Institute, Bombay, 1965. | pl_PL |
dc.references | M. Nagata, On the fourteenth problem of Hilbert, Proc. Intern. Congress Math., 1958, 459- 462, Cambridge Univ. Press, New York, 1966. | pl_PL |
dc.references | A. Nowicki, Polynomial derivations and their rings of constants, Nicolaus Copernicus Uni- versity, Toru n 1994. | pl_PL |
dc.references | A. Nowicki, The example of Roberts to the fourteenth problem of Hilbert (in polish), Materials of the XIX Conference of Complex Analytic and Algebraic Geometry, Publisher University of Lodz, Lodz (1998), 19-44. | pl_PL |
dc.references | A. Nowicki, The example of Freudenburg to the fourteenth problem of Hilbert (in polish), Materials of the XX Conference of Complex Analytic and Algebraic Geometry, Publisher University of Lodz, Lodz (1999), 7-20. | pl_PL |
dc.references | A. Nowicki, The fourteenth problem of Hilbert for polynomial derivations, Di erential Galois Theory, Banach Center Publications 58 (2002), 177-188. | pl_PL |
dc.references | T. A. Springer, Invariant Theory, Lecture Notes 585, 1977. | pl_PL |
dc.references | O. Zariski, Interpr etations alg ebraico-g eometriques du quatorzi eme probl eme de Hilbert, Bull. Sci. Math., 78 (1954), 155-168. | pl_PL |
dc.contributor.authorEmail | anow@mat.uni.torun.pl | pl_PL |
dc.identifier.doi | 10.18778/8142-814-9.13 | |