Show simple item record

dc.contributor.authorPokora, Piotr
dc.contributor.editorKrasiński, Tadeusz
dc.contributor.editorSpodzieja, Stanisław
dc.identifier.citationPokora P., Extremal properties of line arrangements in the complex projective plane, in: Analytic and Algebraic Geometry 3, T. Krasiński, S. Spodzieja (red.), WUŁ, Łódź 2019, doi: 10.18778/8142-814-9.14.pl_PL
dc.description.abstractIn the present note we study some extreme properties of point-line configurations in the complex projective plane from a viewpoint of algebraic geometry. Using Hirzebruch-type inequalites we provide some new results on r-rich lines, symplicial arrangements of lines, and the so-called free line arrangmenets.pl_PL
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl_PL
dc.relation.ispartofAnalytic and Algebraic Geometry 3;
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe*
dc.titleExtremal properties of line arrangements in the complex projective planepl_PL
dc.typeBook chapterpl_PL
dc.contributor.authorAffiliationPedagogical University of Cracow, Department of Mathematicspl_PL
dc.referencesJ. Bokowski and P. Pokora, On line and pseudoline con gurations and ball-quotients. Ars Math. Contemp. 13(2): 409-416 (2017).pl_PL
dc.referencesR. Bojanowski, Zastosowania uog olnionej nier owno sci Bogomolova-Miyaoka-Yau. Master Thesis (in Polish),, 2003.pl_PL
dc.referencesW. Brass & W. Moser & J. Pach, Research Problems in Discrete Geometry. Springer Science+ Business Media, Inc., 2005.pl_PL
dc.referencesM. Cuntz, (224) and (264) con gurations of lines. Ars Math. Contemp. 14(1): 157-163 (2018).pl_PL
dc.referencesA. Dimca, Hyperplane arrangements. An introduction. Universitext. Cham: Springer (ISBN 978-3-319-56220-9/pbk; 978-3-319-56221-6/ebook). xii, 200 p. (2017).pl_PL
dc.referencesF. de Zeeuw, Spanned lines and Langer's inequality. arXiv:1802.08015.pl_PL
dc.referencesF. de Zeeuw, Ordinary lines in space. arXiv:1803.09524.pl_PL
dc.referencesD. Geis, On the combinatorics of Tits arrangements. Hannover: Gottfried Wilhelm Leibniz Universit at, Diss. v, 101 p. (2018),
dc.referencesF. Hirzebruch, Arrangements of lines and algebraic surfaces. Arithmetic and geometry, Vol.II, Progr. Math., vol. 36, Birkhauser Boston, Mass.: 113-140 (1983).pl_PL
dc.referencesE. Melchior, Uber Vielseite der Projektive Ebene. Deutsche Mathematik 5: 461-475 (1941).pl_PL
dc.referencesY. Miyaoka: On the Chern numbers of surfaces of general type. Invent. Math. 42(1): 225-237 (1977).pl_PL
dc.referencesP. Orlik & H. Terao, Arrangements of hyperplanes. Grundlehren der Mathematischen Wissenschaften. 300. Berlin: Springer- Verlag. xviii, 325 p. (1992).pl_PL
dc.referencesH. Terao, Generalized exponents of a free arrangement of hyperplanes and Shepard-Todd- Brieskorn formula. Invent. Math. 63: 159-179 (1981).pl_PL
dc.referencesI. N. Shnurnikov, A tk inequality for arrangements of pseudolines. Discrete Comput Geom 55: 284-295 (2016).pl_PL

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe