dc.contributor.author | Szpond, Justyna | |
dc.contributor.editor | Krasiński, Tadeusz | |
dc.contributor.editor | Spodzieja, Stanisław | |
dc.date.accessioned | 2020-01-28T12:29:17Z | |
dc.date.available | 2020-01-28T12:29:17Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Szpond J., A few introductory remarks on line arrangements, in: Analytic and Algebraic Geometry 3, T. Krasiński, S. Spodzieja (red.), WUŁ, Łódź 2019, doi: 10.18778/8142-814-9.15. | pl_PL |
dc.identifier.isbn | 978-83-8142-814-9 | |
dc.identifier.uri | http://hdl.handle.net/11089/31346 | |
dc.description.abstract | Points and lines can be regarded as the simplest geometrical objects. Incidence relations between them have been studied since ancient times. Strangely enough our knowledge of this area of mathematics is still far from being complete. In fact a number of interesting and apparently difficult conjectures has been raised just recently. Additionally a number of interesting connections to other branches of mathematics have been established. This is an attempt to record some of these recent developments. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl_PL |
dc.relation.ispartof | Analytic and Algebraic Geometry 3; | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.title | A few introductory remarks on line arrangements | pl_PL |
dc.type | Book chapter | pl_PL |
dc.page.number | 201-212 | pl_PL |
dc.contributor.authorAffiliation | Pedagogical University of Cracow, Department of Mathematics | pl_PL |
dc.identifier.eisbn | 978-83-8142-815-6 | |
dc.references | M. Aigner and G. M. Ziegler. Proofs from The Book. Springer, Berlin, sixth edition, 2018. See corrected reprint of the 1998 original [ MR1723092], Including illustrations by Karl H. Hofmann. | pl_PL |
dc.references | M. Artebani and I. Dolgachev. The Hesse pencil of plane cubic curves. Enseign. Math. (2), 55(3-4):235-273, 2009. | pl_PL |
dc.references | T. Bauer, S. Di Rocco, B. Harbourne, J. Huizenga, A. Lundman, P. Pokora, and T. Szemberg. Bounded negativity and arrangements of lines. Int. Math. Res. Not. IMRN, (19):9456{9471, 2015. | pl_PL |
dc.references | T. Bauer, G. Malara, T. Szemberg, and J. Szpond. Quartic unexpected curves and surfaces. Manuscripta Math., to appear, doi.org/10.1007/s00229-018-1091-3. | pl_PL |
dc.references | C. Bocci and B. Harbourne. Comparing powers and symbolic powers of ideals. J. Algebraic Geom., 19(3):399-417, 2010. | pl_PL |
dc.references | C. Bocci and B. Harbourne. The resurgence of ideals of points and the containment problem. Proc. Amer. Math. Soc., 138(4):1175-1190, 2010. | pl_PL |
dc.references | D. Cook II, B. Harbourne, J. Migliore, and U. Nagel. Line arrangements and con gurations of points with an unexpected geometric property. Compos. Math., 154(10):2150-2194, 2018. | pl_PL |
dc.references | H. S. M. Coxeter. A problem of collinear points. Amer. Math. Monthly, 55:26-28, 1948. | pl_PL |
dc.references | D. W. Crowe and T. A. McKee. Sylvester's problem on collinear points. Math. Mag., 41:30- 34, 1968. | pl_PL |
dc.references | J. Csima and E. T. Sawyer. There exist 6n=13 ordinary points. Discrete Comput. Geom., 9(2):187-202, 1993. | pl_PL |
dc.references | A. Czapliński, A. Główka, G. Malara, M. Lampa-Baczyńska, P. Luszcz-Świdecka, P. Pokora, and J. Szpond. A counterexample to the containment I(3) I2 over the reals. Adv. Geom., 16(1):77-82, 2016. | pl_PL |
dc.references | N. G. de Bruijn and P. Erd os. On a combinatorial problem. Nederl. Akad. Wetensch., Proc., 51:1277{1279 = Indagationes Math. 10, 421-423 (1948), 1948. | pl_PL |
dc.references | R. Di Gennaro, G. Ilardi, and J. Vall es. Singular hypersurfaces characterizing the Lefschetz properties. J. Lond. Math. Soc. (2), 89(1):194-212, 2014. | pl_PL |
dc.references | M. Dumnicki, B. Harbourne, U. Nagel, A. Seceleanu, T. Szemberg, and H. Tutaj-Gasińska. Resurgences for ideals of special point con gurations in PN coming from hyperplane arrangements. J. Algebra, 443:383-394, 2015. | pl_PL |
dc.references | M. Dumnicki, D. Harrer, and J. Szpond. On absolute linear Harbourne constants. Finite Fields Appl., 51:371-387, 2018. | pl_PL |
dc.references | M. Dumnicki, T. Szemberg, and H. Tutaj-Gasińska. Counterexamples to the I(3) I2 containment. J. Algebra, 393:24-29, 2013. | pl_PL |
dc.references | L. Ein, R. Lazarsfeld, and K. E. Smith. Uniform bounds and symbolic powers on smooth varieties. Invent. Math., 144(2):241-{252, 2001. | pl_PL |
dc.references | L. Farnik, F. Galuppi, L. Sodomaco, and W. Trok. On the unique unexpected quartic in P2. arXiv:1804.03590. | pl_PL |
dc.references | Z. Furedi and I. Palasti. Arrangements of lines with a large number of triangles. Proc. Amer. Math. Soc., 92(4):561-566, 1984. | pl_PL |
dc.references | A. V. Geramita, B. Harbourne, and J. Migliore. Star con gurations in Pn. J. Algebra, 376:279-299, 2013. | pl_PL |
dc.references | B. Green and T. Tao. On sets de ning few ordinary lines. Discrete Comput. Geom., 50(2):409-468, 2013. | pl_PL |
dc.references | E. Grifo, C. Huneke, and V. Mukundan. Expected resurgences and symbolic powers of ideals, arXiv:1903.12122. | pl_PL |
dc.references | K. Hanumanthu and B. Harbourne. Real and complex supersolvable line arrangements in the projective plane, arXiv:1907.07712. | pl_PL |
dc.references | B. Harbourne and C. Huneke. Are symbolic powers highly evolved? J. Ramanujan Math. Soc., 28A:247-266, 2013. | pl_PL |
dc.references | B. Harbourne and A. Seceleanu. Containment counterexamples for ideals of various con gurations of points in PN. J. Pure Appl. Algebra, 219(4):1062-1072, 2015. | pl_PL |
dc.references | O. Hesse. Uber die Elimination der Variabeln aus drei algebraischen Gleichungen vom zweiten Grade mit zwei Variabeln. J. Reine Angew. Math., 28:68-96, 1844. | pl_PL |
dc.references | F. Hirzebruch. Arrangements of lines and algebraic surfaces. In Arithmetic and geometry, Vol. II, volume 36 of Progr. Math., pages 113{140. Birkhauser, Boston, Mass., 1983. | pl_PL |
dc.references | M. Hochster and C. Huneke. Comparison of symbolic and ordinary powers of ideals. Invent. Math., 147(2):349-369, 2002. | pl_PL |
dc.references | J. Jackson. Rational Amusement for Winter Evenings. Longman, Hurst, Rees, Orme and Brown, London, 1821. | pl_PL |
dc.references | L. M. Kelly and W. O. J. Moser. On the number of ordinary lines determined by n points. Canadian J. Math., 10:210-219, 1958. | pl_PL |
dc.references | C. W. H. Lam. The search for a nite projective plane of order 10 [ MR1103185 (92b:51013)]. In Organic mathematics (Burnaby, BC, 1995), volume 20 of CMS Conf. Proc., pages 335{ 355. Amer. Math. Soc., Providence, RI, 1997. | pl_PL |
dc.references | M. Lampa-Baczyńska and J. Szpond. From Pappus Theorem to parameter spaces of some extremal line point con gurations and applications. Geom. Dedicata, 188:103-121, 2017. | pl_PL |
dc.references | L. Ma and K. Schwede. Perfectoid multiplier/test ideals in regular rings and bounds on symbolic powers. Invent. Math., 214(2):913-955, 2018. | pl_PL |
dc.references | E. Melchior. Uber Vielseite der projektiven Ebene. Deutsche Math., 5:461-475, 1941. | pl_PL |
dc.references | T. Motzkin. The lines and planes connecting the points of a nite set. Trans. Amer. Math. Soc., 70:451-464, 1951. | pl_PL |
dc.references | P. Pokora. Extremal properties of line arrangements in the complex projective plane, in this volume. | pl_PL |
dc.references | I. Swanson. Linear equivalence of ideal topologies. Math. Z., 234(4):755-775, 2000. | pl_PL |
dc.references | J. J. Sylvester. Problem 11851, Math. Questions from the Educational Times 59 (1893), 98-99. | pl_PL |
dc.references | J. Szpond. On Hirzebruch type inequalities and applications. In Extended abstracts February 2016|positivity and valuations, volume 9 of Trends Math. Res. Perspect. CRM Barc., pages 89-94. Birkh auser/Springer, Cham, 2018. | pl_PL |
dc.references | J. Szpond. Fermat-type arrangements, arXiv:1909.04089. | pl_PL |
dc.contributor.authorEmail | szpond@up.krakow.pl | pl_PL |
dc.identifier.doi | 10.18778/8142-814-9.15 | |