dc.contributor.author | Gala-Jaskórzynska, Aleksandra | |
dc.contributor.author | Kurdyka, Krzysztof | |
dc.contributor.author | Rudnicka, Katarzyna | |
dc.contributor.author | Spodzieja, Stanisław | |
dc.contributor.editor | Krasiński, Tadeusz | |
dc.contributor.editor | Spodzieja, Stanisław | |
dc.date.accessioned | 2020-01-29T12:16:32Z | |
dc.date.available | 2020-01-29T12:16:32Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Gala-Jaskórzyńska A., Kurdyka K., Rudnicka K., Spodzieja S., Gelfond-Mahler inequality for multipolynomial resultants, in: Analytic and Algebraic Geometry 3, T. Krasiński, S. Spodzieja (red.), WUŁ, Łódź 2019, doi: 10.18778/8142-814-9.07. | pl_PL |
dc.identifier.isbn | 978-83-8142-814-9 | |
dc.identifier.uri | http://hdl.handle.net/11089/31354 | |
dc.description.abstract | We give a bound of the height of a multipolynomial resultant in terms of polynomial degrees, the resultant of which applies. Additionally we give a Gelfond-Mahler type bound of the height of homogeneous divisors of a homogeneous polynomial. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl_PL |
dc.relation.ispartof | Analytic and Algebraic Geometry 3; | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.title | Gelfond-Mahler inequality for multipolynomial resultants | pl_PL |
dc.type | Book chapter | pl_PL |
dc.page.number | 79-92 | pl_PL |
dc.contributor.authorAffiliation | Faculty of Mathematics and Computer Science, University of Lodz | pl_PL |
dc.contributor.authorAffiliation | Laboratoire de Mathematiques (LAMA) Universite Savoie Mont Blanc | pl_PL |
dc.contributor.authorAffiliation | Faculty of Mathematics and Computer Science, University of Lodz | pl_PL |
dc.contributor.authorAffiliation | Faculty of Mathematics and Computer Science, University of Lodz | pl_PL |
dc.identifier.eisbn | 978-83-8142-815-6 | |
dc.references | D.A. Cox, J. Little, D. O'Shea, Using algebraic geometry. Second edition, Graduate Texts in Mathematics, 185. Springer, New York, 2005. | pl_PL |
dc.references | I.M. Gelfand, M.M. Kapranov, A,V. Zelevinsky, Discriminants, resultants, and multidimen- sional determinants. Reprint of the 1994 edition. Modern Birkh auser Classics. Birkh auser Boston, Inc., Boston, MA, 2008. x+523 pp. | pl_PL |
dc.references | A.P. Gelfond, Transtsendentnye i algebraitcheskie tchisla (Moscow, 1952). | pl_PL |
dc.references | J.P. Jouanolou, Formes d'inertie et r esultant: un formulaire. Adv. Math. 126 (1997), no. 2, 119{250. | pl_PL |
dc.references | F. Macaulay, On some formulas in elimination, Proc. London Math. Soc. 3 (1902), 3{27. | pl_PL |
dc.references | K. Mahler, An application of Jensen's formula to polynomials. Mathematika 7 1960 98{100. | pl_PL |
dc.references | K. Mahler, On some inequalities for polynomials in several variables. J. London Math. Soc. 37 (1962), 341{344. | pl_PL |
dc.references | C.J. Smyth, A Kronecker-type theorem for complex polynomials in several variables. Canad. Math. Bull. 24 (1981), no. 4, 447{452. | pl_PL |
dc.references | M. Sombra, The height of the mixed sparse resultant. Amer. J. Math. 126 (2004), no. 6, 1253-1260. | pl_PL |
dc.contributor.authorEmail | agjaskorzynska@math.uni.lodz.pl | pl_PL |
dc.contributor.authorEmail | Krzysztof.Kurdyka@univ-savoie.fr | pl_PL |
dc.contributor.authorEmail | kkuta@math.uni.lodz.pl | pl_PL |
dc.contributor.authorEmail | stanislaw.spodzieja@wmii.uni.lodz.pl | pl_PL |
dc.identifier.doi | 10.18778/8142-814-9.07 | |