Show simple item record

dc.contributor.authorBorowski, Krzysztof
dc.contributor.authorMatusewicz, Michał
dc.date.accessioned2021-02-24T12:23:08Z
dc.date.available2021-02-24T12:23:08Z
dc.date.issued2020-09
dc.identifier.issn2353-5601
dc.identifier.urihttp://hdl.handle.net/11089/33852
dc.description.abstractThe purpose of the article This paper analysis Hurst exponents calculated with the use of the Siroky method in two time intervals of 625 (H625) and 1250 (H1260) sessions for the following assets: (the number of assets for a given group in brackets): Stock indices (74), currency pairs divided into segments: USD exchange rate in relation to 42 other currencies (USDXXX), EURO exchange rate in relation to 41 other currencies (EURXXX), JPY exchange rate in relation to 40 other currencies (JPYXXX) and other currency pairs (12). In total, 209 financial instruments were analyzed. Methodology: Hurst coefficient calculation with the use of the following methods; Siroky, Detrended Moving Average (DMA) and Detrended Fluctuation Analysis (DFA). Results of the research: The Hurst coefficient values calculated with the use of Siroky method are similar to the results obtained using DFA and DMA methods. The second main conclusion that was drawn from the research may be formulated as follows: exchange rates calculated for the developed-developed country currencies are more effective than in the case of the developed- -emerging countries group.pl_PL
dc.language.isoenpl_PL
dc.publisherWydział Ekonomiczno-Socjologicznypl_PL
dc.relation.ispartofseriesFinanse i Prawo Finansowe;3
dc.rightsAttribution-NoDerivatives 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/*
dc.subjectHurst exponentpl_PL
dc.subjectmarket efficiencypl_PL
dc.subjectdeveloped countriespl_PL
dc.titleCalculating Hurst exponent with the use of the siroky method in developed and emerging marketspl_PL
dc.typeArticlepl_PL
dc.page.number25-61pl_PL
dc.contributor.authorAffiliationWarsaw School of Economicspl_PL
dc.contributor.authorAffiliationWarsaw School of Economicspl_PL
dc.referencesAbry P., Veitch D., 1998, Wavelet Analysis Of Long-Range Dependent Traffic, „IEEE/ACM Transactions Information Theory”, vol. 1(44)pl_PL
dc.referencesAlessio E., Carbone A., Castelli G., Frappietro V., 2002, Second-Order Moving Average And Scaling Of Stochastic Time Series, „European Physical Journal”, vol. 2(27).pl_PL
dc.referencesAlvarez-Ramirez J., Alvarez J., Rodriguez E., Fernandez A., 2008, Time-Varying Hurst Exponent For Us Stock Markets, „Physica A”, vol. 24.pl_PL
dc.referencesAlvarez-Ramirez J., Cisneros M., Ibarra-Valdez C., Soriano A., 2002, Multifractal Hurst Analysis Of Crude Oil Prices, „Physica A”, vol. 313.pl_PL
dc.referencesBarkoulas J., Baum C., 1996, Long-Term Dependence In Stock Returns, „Economics Letters”, vol. 53.pl_PL
dc.referencesBarkoulas J., Labys W., Onochie J., 1997, Fractional Dynamics In International Commodity Prices, „Journal of Futures Markets”, vol. 17(2).pl_PL
dc.referencesBarunik J., Kristoufek L., 2010, On Hurst Exponent Estimation Under Heavy-Tailed Distributions, „Physica A”, vol. 389.pl_PL
dc.referencesBatten J., Ellis C., Fetherston T., 2003, Return Anomalies On The Nikkei: Are They Statistical Illusions?, http://ssrn.com/abstract=396680 [access 12.03.2020].pl_PL
dc.referencesBerg L., Lyhagen J., 1996, Short And Long Run Dependence In Swedish Stock Returns, http://ssrn.com/abstract=2270 [access 12.03.2020].pl_PL
dc.referencesBunde A., Havlin S., 1995, A brief introduction to fractal geometry, [in] A. Bunde, S. Havlin [ed.], Fractal and disordered systems, Springer-Verlag, Berlinpl_PL
dc.referencesCajueiro D., Tabak B., 2004a, Ranking Efficiency For Emerging Markets, „Chaos, Solitons and Fractals”, vol. 22pl_PL
dc.referencesCajueiro D., Tabak B., 2004b, The Hurst Exponent Over Time: Testing The Assertion That The Emerging Markets Are Becoming More Efficient, „Physica A”.pl_PL
dc.referencesCajueiro D., Tabak B., 2005, Ranking Efficiency For Emerging Markets II, „Chaos, Solitons and Fractals”, vol. 23.pl_PL
dc.referencesCaporale G., Gil_Alana L., Plastun A., Makarnko L., 2016, Long Memory In The Ukrainian Stock Market And Financial Crises, „Journal of Economics and Finance”, vol. 40.pl_PL
dc.referencesCaporale G., Gil-Alana L., Plastun A., 2018, Is Market Fear Persistent? A Long-Memory Analysis, „Finance Research Letters”, vol. 27pl_PL
dc.referencesCaraiani P., 2012, Evidence Of Multifractality From Emerging European Stock Markets, „PLoS ONE”, vol. 7, e40693.pl_PL
dc.referencesCheung Y., Lai K., 1995, A Search For Long-Range Dependence In International Stock Market Returns, „Journal of International Money and Finance”, vol. 14(4).pl_PL
dc.referencesChow K., Ming-Shium P., Ryoichi S., 1996, On The Long-Run Or Short-Term Dependence In Stock Prices: Evidence From International Stock Markets, „Review of Quantitative Finance and Accounting”, vol. 6(2).pl_PL
dc.referencesCorazza M., Malliaris A., 2002, Multifractality In Foreign Currency Markets, „Multinational Finance Journal”, vol. 6.pl_PL
dc.referencesCosta R, Vasconcelos G., 2003, Long-Range Correlations And Nonstationarity In The Brazilian Stock Market, „Physica A”, vol. 329(1–2).pl_PL
dc.referencesCrato N., Ray B., 1999, Memory in returns and volatilities of commodity futures’ contracts, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.6774 [access 12.03.2020].pl_PL
dc.referencesCzarnecka A., Wilimowska Z., 2018, Hurst exponent as a risk measurement on the capital market, [in] J. Świątek, L. Borzemski, Z. Wilimowska, Information Systems Architecture and Technology: Proceedings of 38th International Conference on Information Systems Architecture and Technology, ISAT 2017, 2018. Pt. 2,Springer International Publishing, Warszawa.pl_PL
dc.referencesDa Silva S., Matsushita R., Gleria I., Figueiredo A., 2007, Hurst Exponents, Power Laws, And Efficiency In The Brazilian Foreign Exchange Market, „Economics Bulletin”, vol. 7(1).pl_PL
dc.referencesDi Matteo T., Aste T., Dacorogna M., 2003, Scaling Behaviors Indifferently Developed Markets, „Physica A”, vol. 324.pl_PL
dc.referencesDominique C., Rivera S., 2011, Mixed Fractional Brownian Motion, Short And Long-Term Dependence And Economic Conditions: The Case Of The S&P 500 Index, „International Business Management”, vol. 3.pl_PL
dc.referencesDomino K., 2011, The Use Of The Hurst Exponent To Predict Changes In Trend On The Warsaw Stock Exchange, „Physica A”, vol. 390.pl_PL
dc.referencesEhlers J., 2005, Fractal Adaptive Moving Average, „Technical Analysis of Stock & Commodities”, vol. 10(23).pl_PL
dc.referencesEhlers J., Way R., 2010, Fractal Dimension As A Market Mode Sensor, „Technical Analysis of Stock & Commodities”, vol. 6(28).pl_PL
dc.referencesEinstein A., 1908, Elementare theorie der Brownschen bewungen, „Zeitschrift für Elektrochemie und angewandte physikalische Chemie”, vol. 14(50).pl_PL
dc.referencesFerreira P., 2018, Long-Range Dependence Of Eastern-European Stock Markets: A Dynamic Detrended Analysis, „Physica A”, vol. 505.pl_PL
dc.referencesGlenn L., 2007, On Randomness And The NASDAQ Composite”, Working Paper, http://ssrn.com/abstract=1124991 [access 12.03.2020].pl_PL
dc.referencesGranger C., Ding Z., 1995, Some Properties Of Absolute Returns, A Alternative Measure Of Risk, „Annales d’Economie et de Statistique”, vol. 40.pl_PL
dc.referencesGranger C., Hyungh H., 2004, Occasional Structural Breaks And Long Memory With An Application To S&P 500 Absolute Stock Returns, „Journal of Empirical Finance”, vol. 11.pl_PL
dc.referencesGreene M., Fielitz B., 1977, Long-term dependence in common stock returns, „Journal of Financial Economics”, vol. 4.pl_PL
dc.referencesHenry O., 2002, Long Memory In Stock Returns, Some International Evidence, „Applied Financial Economics”, vol. 12.pl_PL
dc.referencesHiemstra C., Jones D., 1997, Another Look At Long Memory In Common Stock Returns, „Journal of Empirical Finance”, vol. 4(4).pl_PL
dc.referencesHja S., Lin Y., 2007, R S Analysis Of China Securities Markets, „Tsinghua Science and Technology”, vol. 8(5).pl_PL
dc.referencesHuang B., Yang C., 1999, An Examination Of Long-Term Memory Using The Intraday Stock Returns, Working Paper, Clarion University of Pennsylvania.pl_PL
dc.referencesHurst H., 1951, Long Term Storage Capacity Of Reservoirs, „Transactions of American Society of Civil Engineers”, vol. 116.pl_PL
dc.referencesJacobsen B., 1995, Are Stock Returns Long Term Dependent? Some Empirical Evidence, „Journal of International Financial Markets, Institutions and Money”, vol. 5(2/3).pl_PL
dc.referencesJagric T., Podobnik K., Kolanovic M., 2005, Does The Efficient Market Hypothesis Hold? Evidence From Six Transition Economies, „Ester European Economics”, vol. 43.pl_PL
dc.referencesJud S., 2017, Conquering The Seven Faces Of Risk, FinTech Press, Seattle.pl_PL
dc.referencesKale M., Butar F., 2011, Fractal Analysis Of Time Series And Distribution Properties Of Hurst Exponent, „Journal of Mathematical Sciences & Mathematics Education”, vol. 5(1).pl_PL
dc.referencesKantelhardt J., Zschiegner S., Koscielny-Bunde E., Budne A., Havlin S., Stanley E., 2002, Multifractal Detrended Fluctuation Analysis Of Nonstationary Time Series, „Physica A”, vol. 316(1–4).pl_PL
dc.referencesKapecka A., 2015, Analiza porównawcza wybranych indeksów giełdowych rynków dojrzałych i wschodzących z wykorzystaniem wykładnika Hursta, „Acta Universitatis Nicolai Copernici, Ekonomia”, vol. 1(46).pl_PL
dc.referencesKim K., Yoon S., 2004, Multifractal Features Of Financial Markets, „Physica A”, vol. 344(1).pl_PL
dc.referencesKowgier H., 2009, Kilka uwag o wymiarze fraktalnym Minkowskiego oraz wykładniku Hursta na Giełdzie Papierów Wartościowych, „Studia i Prace Wydziału Nauk Ekonomicznych i Zarządzania”, vol. 15.pl_PL
dc.referencesKristoufek L., Vosvdra M., 2013, Measuring capital market efficiency: Global and local correlation structure, „Physica A”, vol. 392pl_PL
dc.referencesKyaw N., Los C., Zong S., 2004, Persistence Characteristics Of Latin American Financial Markets, Kent State University Finance Working Paper, https://ssrn.com/abstract=298745 [access 12.03.2020]pl_PL
dc.referencesLento C., 2009, A Synthesis Of Technical Analysis And Fractal Geometry – Evidence From The Dow Jones Industrial Average Components, http://ssrn.com/abstract=1263615 [access 12.03.2020].pl_PL
dc.referencesLipka J., Los C., 2003, Long-Term Dependence Characteristics Of European Stock Indices, Economics Working Paper Archive, EconWPA, Finance Nº0409044.pl_PL
dc.referencesLo A., 1991, Long-Term Memory In Stock Market Prices, „Econometrica”, vol. 59pl_PL
dc.referencesLo A., 2004, The Adaptive Markets Hypothesis: Market Efficiency Form An Evolutionary Perspective, „Journal of Portfolio Management”, vol. 30, pp. 15–29.pl_PL
dc.referencesLos C., Yalamova R., 2006, Multi-Fractal Spectral Analysis Of The 1987 Stock Market Crash, „International Research Journal of Finance and Economics”, vol. 1, 4, pp. 106–133.pl_PL
dc.referencesLu Y., Perron P., 2010, Modeling And Forecasting Stock Return Volatility Using A Random Level Shift Model, „Journal of Empirical Finance”, vol. 17, pp. 138–156.pl_PL
dc.referencesMandelbrot B., Wallis J., 1968, Joseph And Operational Hydrology, Water-Resources Research, no. 4.pl_PL
dc.referencesMantenga R., Stanley H., 1995, Scaling Behavior In The Dynamics Of An Economic Index, „Nature”, vol. 376, pp. 46–49.pl_PL
dc.referencesMastalerz-Kodzis A., 2003, Modelowanie procesów na rynku kapitałowym za pomocą multifraktali, Wydawnictwo Akademii Ekonomicznej w Katowicach, Katowicepl_PL
dc.referencesMcKenzie M., 2001, Non-Periodic Australian Stock Market Cycles: Evidence From Rescaled Range Analysis, „Economic Record”, vol. 77, pp. 393–406.pl_PL
dc.referencesMulligan R., 2000, A Fractal Analysis Of Foreign Exchange Markets, „International Advances in Economic Research”, vol. 6(1).pl_PL
dc.referencesMuzy J., Barcy E., Arneodo A., 1994, The Multifractal Formalism Revisited With Wavelets, „National Journal of Bifurcation and Chaos”, vol. 2(2).pl_PL
dc.referencesMynhardt R., Plastun A., Makarenko I., 2014, Behavior Of Financial Markets Efficiency During The Financial Market Crisis: 2007–2009. Munich Persona RePEc Archive (MPRA), no. 58942, https://mpra.ub.uni-muenchen.de/58942/ [access 12.03.2020].pl_PL
dc.referencesOnali E., Goddard J., 2010, Are European Equity Markets Efficient? New Evidence From Fractal Analysis”, http://ssrn.com/abstract=1805044 [access 12.03.2020].pl_PL
dc.referencesOpong K., Mulholland G., Fox A., Farahmand K., 1999, The Behaviour Of Some UK Equity Indices: An Application Of Hurst And BDS Tests, „Journal of Empirical Finance”, vol. 6.pl_PL
dc.referencesOrzeszko W., 2010, Fractal Dimension Of Time Series As A Measure Of Investment Risk, „Acta Universitatis Nicolai Copernici. Ekonomia”, vol. 41.pl_PL
dc.referencesPeng C., Buldyrev S., Havlin S., Simons M., Goldberger A., 1994, Mosaic Organization Of DNA Nucleotides, „Physica Review E”, vol. 49(2).pl_PL
dc.referencesPeters E., 1991, Chaos And Order In Capital Markets, John Wiley & Sons, New York.pl_PL
dc.referencesPeters E., 1994, Practical Market Analysis, Applying Chaos Theory To Investment And Economics, John Wiley & Sons, New York.pl_PL
dc.referencesPeters E., 1997, Teoria chaosu i rynki finansowe, WIG-PRESS, Warszawapl_PL
dc.referencesPrzekota G., 2012, Szacowanie ryzyka zmian cen akcji metodą podziału pola, „Problemy Zarządzania”, vol. 4(10)pl_PL
dc.referencesRaimundo M., Okamoto J., 2018, Application Of Hurst Exponent (H) And The R/S Analysis In The Classification Of FOREX Securities, „International Journal of Modelling and Optimization”, vol. 8(2).pl_PL
dc.referencesSerletis A., Rosenberg A., 2009, Mean Reversion In The US Stock Market, „Chaos, Solitons and Fractals”, vol. 40.pl_PL
dc.referencesSiroky M., 2017, Estimating The Fractal Dimension On Stock Prices, „Technical Analysis of Stock & Commodities”, vol. 12(35).pl_PL
dc.referencesVoss R., 1991, Random Fractal Forgeries, [in:] R. Earnshaw (ed.), Fundamental Algorithms For Computer Graphicpp, Springer, Berlinpl_PL
dc.referencesWeron A., Weron R., 1998, Inżyniera finansowa, Wydawnictwo Naukowo-Techniczne, Warszawapl_PL
dc.referencesWilder W., 1978, New Concept In Technical Trading Systems, Trend research, Washington.pl_PL
dc.references[www1] www.ion.researchsystems.com/IONScript/wavelet/website [access 12.01.2020].pl_PL
dc.identifier.doi10.18778/2391-6478.3.27.02
dc.relation.volume27pl_PL
dc.disciplineekonomia i finansepl_PL


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NoDerivatives 4.0 Międzynarodowe
Except where otherwise noted, this item's license is described as Attribution-NoDerivatives 4.0 Międzynarodowe