Pokaż uproszczony rekord

dc.contributor.authorWozniak, Marcin
dc.date.accessioned2021-03-05T11:51:39Z
dc.date.available2021-03-05T11:51:39Z
dc.date.issued2020-02-03
dc.identifier.issn0208-6018
dc.identifier.urihttp://hdl.handle.net/11089/34081
dc.description.abstractDue to enormous technological progress, socio‑economic science has gained new possibilities of investigating complex and not well‑known socio‑economic phenomena. One of the recent promising research approaches is agent‑based modelling (ABM) with connection to geographical (GIS) data. ABM is a bottom‑up research method concerning individuals that live and interact in the artificial environment. In this type of simulation, evolution of the whole system and macro‑level patterns results from individual behaviour of autonomous entities. Combining ABM with GIS data moves the simulation into the real geographical space. Applying this approach provides powerful possibilities of more realistic socio‑economic simulations concerning urban and spatial economics, sociology and psychology. Geosimulation also helps to answer questions about dependencies between geographical space and economic performances of modern cities. In this paper, a closer look at this topic is presented. We deal with the problem of implementation of GIS data into agent‑based modelling software. In the first step of our research procedure, we compare ABM programming platforms, then we chose three of them which provide GIS data support. In the second step, we implement OpenStreetMap GIS data for one of the districts of Poznań into these programming platforms. Finally, we compare the performance of ABM platforms regarding three major criteria: difficulty of programming, GIS data compatibility and available technical support. Our research is the first step in developing a comple Xsocio‑economic urban system under the ABM paradigm.en
dc.description.abstractW związku z ogromnym postępem technologicznym przed naukami społeczno‑ekonomicznymi otworzyły się nowe płaszczyzny badań złożonych i nie do końca poznanych zjawisk. Jednym z podejść badawczych w tych obszarach jest tzw. modelowanie wieloagentowe (Agent‑Based Modeling) w połączeniu z danymi geograficznymi (GIS). Modelowanie wieloagentowe to metoda, w której budowane są złożone systemy składające się z autonomicznych jednostek (agentów). Między agentami zachodzą interakcje na poziomie mikro, których rezultatem jest ewolucja całego systemu na poziomie makro. Jednym z interesujących trendów modelowania wieloagentowego jest geosymulacja, czyli symulacja wieloagentowa osadzona w świecie wirtualnym, będącym odpowiednikiem realnej, fizycznej przestrzeni. Geosymulacja umożliwia zaawansowane i bardziej realistyczne badania na gruncie ekonomii przestrzennej, socjologii czy psychologii. Niniejszy artykuł pogłębia tę problematykę. Dokonano w nim identyfikacji i porównania dostępnych platform do symulacji wieloagentowej i wybrano trzy, które posiadają wsparcie dla danych geograficznych (GIS). Na tych platformach zaimplementowano dane GIS o zagospodarowaniu przestrzennym dla jednej z dzielnic Poznania. Dokonano również porównania funkcjonalności oprogramowania pod kątem trzech kryteriów: trudności programowania, funkcjonalności i współpracy z danymi GIS oraz dostępności materiałów szkoleniowych. Badania te stanowią wstępny etap opracowania złożonego, społeczno‑ekonomicznego systemu miejskiego, osadzonego w paradygmacie modelowania wieloagentowego.pl
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesActa Universitatis Lodziensis. Folia Oeconomica;346en
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/
dc.subjectagent‑based modellingen
dc.subjectgeographical information systemsen
dc.subjecturban economicsen
dc.subjectspatial economicsen
dc.subjectmodelowanie wieloagentowepl
dc.subjectsystemy informacji geograficznejpl
dc.subjectekonomia miastpl
dc.subjectekonomia przestrzennapl
dc.titleVirtualising Space – New Directions for Applications of Agent-Based Modelling in Spatial Economicsen
dc.title.alternativeWirtualizacja przestrzeni – nowe kierunki aplikacji modelowania wieloagentowego w ekonomii przestrzennejpl
dc.typeArticle
dc.page.number7-26
dc.contributor.authorAffiliationAdam Mickiewicz University in Poznań, Faculty of Socio-Economic Geography and Spatial Managementen
dc.identifier.eissn2353-7663
dc.referencesAbar S., Theodoropoulos G. K., Lemarinier P., O’Hare G. M. P. (2017), Agent Based Modelling and Simulation tools: A review of the state‑of‑art software, “Computer Science Review”, vol. 24, pp. 13–33.en
dc.referencesAdamatti D.F., Dimuro G. P., Coelho H. (2014), Interdisciplinary Applications of Agent‑Based Social Simulation and Modeling, IGI Global, Hershey.en
dc.referencesAkerlof G. A., Yellen J. L. (1987), Rational Models of Irrational Behavior, “The American Economic Review”, vol. 77, no. 2, Papers and Proceedings of the Ninety‑Ninth Annual Meeting of the American Economic Association, pp. 137–142.en
dc.referencesAriely D. (2008), Predictably Irrational: The Hidden Forces That Shape Our Decisions, Harper‑Collins, New York.en
dc.referencesAxelrod R., Hamilton W. D. (1981), The Evolution of Cooperation Science, “New Series”, vol. 211, no. 4489, pp. 1390–1396.en
dc.referencesAxtell R., Epstein J. M. (1996), Growing Artificial Societies. Social Science from the Bottom Up, MIT Press, Cambridge.en
dc.referencesBenenson I., Torrens P. M. (2006), Geosimulation: Automata‐Based Modeling of Urban Phenomena, John Wiley & Sons, Ltd., Sussex.en
dc.referencesBerryman M. (2008), Review of Software Platforms for Agent Based Models. Technical report, https://pdfs.semanticscholar.org/a158/181431fbfd01765668dc1d08229072e982aa.pdf [accessed: 6.12.2019].en
dc.referencesBlanchard O. (2018), On the future of macroeconomic models, “Oxford Review of Economic Policy”, vol. 34, issue 1–2, pp. 43–54en
dc.referencesBorrill P. L., Tesfatsion L. (2010), Agent‑Based Modeling: The Right Mathematics for the Social Sciences?, Staff General Research Papers Archive, Iowa State University, Department of Economics, Ames.en
dc.referencesBoyce D., Williams H. (2015), Forecasting Urban Travel: Past, Present and Future, Edward Elgar Publishing, Cheltenham–Northampton.en
dc.referencesBrock W. A., Hommes C. H. (1994), Heterogeneous beliefs and routes to chaos in a simple asset pricing model, “Journal of Economic Dynamics and Control”, vol. 22, issues 8–9, pp. 1235–1274.en
dc.referencesBrunsdon Ch., Singleton A. (2015), Geocomputation: a practical primer, Sage Publications, Inc., Londonen
dc.referencesCrooks A., Castle C. J. E. (2012), The Integration of Agent‑Based Modelling and Geographical Information for Geospatial Simulation, [in:] A. Heppenstall, A. Crooks, L. See, M. Batty (eds.), Agent‑Based Models of Geographical Systems, Springer, Dordrecht, pp. 219–251.en
dc.referencesCrooks A., Hudson‑Smith A., Patel A. (2011), Advances and Techniques for Building 3D Agent‑Based Models for Urban Systems, [in:] D. Marceau, I. Benenson (eds.), Advanced Geosimulation Models, Bentham Books, Hilversum, pp. 49–65.en
dc.referencesGarretsen H., Martin R. (2010), Rethinking (New) Economic Geography Models: Taking Geography and History More Seriously, “Spatial Economic Analysis”, vol. 5, no. 2, pp. 127–160en
dc.referencesGershenson C. (2012), Complexity at large, “Complexity”, no. 18, pp. 1–4en
dc.referencesGilbert N. (2008), Agent‑based models, Sage Publications, Los Angeles–London–Delhi–Singapore.en
dc.referencesGilbert N., Troitzsch K. G. (1999), Simulation for the Social Scientist, Open University Press, Buckingham.en
dc.referencesHaklay M., O’Sullivan D., Thurstain‑Goodwin M., Schelhorn T. (2001), “So go downtown”: simulating pedestrian movement in town centres, “Environment and Planning B: Planning and Design”, no. 28, pp. 343–359en
dc.referencesHamblen M. (2015), Just what is a smart city, “Computerworld”, https://www.computerworld.com/article/2986403/just-what-is-a-smart-city.html [accessed: 6.12.2019].en
dc.referencesHeppenstall A. J., Crooks A. T., See L. M., Batty M. (2011), Agent‑Based Models of Geographical Systems, Springer, London–New York.en
dc.referencesLuke S., Cioffi‑Revilla C., Panait L. (2005), MASON: A Multi‑Agent Simulation Environment, Department of Computer Science and Center for Social Complexity George Mason University, Fairfax.en
dc.referencesLynch K. (1960), The Image of the City, The MIT Press, Cambridge–London.en
dc.referencesLyu X., Han Q., Vries B. de (2016), Towards a Simulation of Mixed Land Use Impacts on Transport: a Procedural Urban Modelling of Urban Layout, Paper presented at 13th international conference on design & descision support systems in architecture and urban planning, Eindhoven.en
dc.referencesMacal Ch.M., North M. (2005), Tutorial on agent‑based modeling and simulation, Simulation conference, 2005 proceedings of the winter.en
dc.referencesMacy M. W., Willer R. (2002), From Factors to Actors: Computational Sociology and Agent‑Based Modeling, “Annual Review of Sociology”, vol. 28, pp. 143–166.en
dc.referencesMarceau D. J., Benenson I. (2011), Advanced Geosimulation Models, Centre for Advanced Spatial Analysis UCL, London.en
dc.referencesPalmer R. G., Arthur W. B., Holland J. H., LeBaron B., Tayler P. (1994), Artificial economic life: a simple model of a stockmarket, “Physica D: Nonlinear Phenomena”, vol. 75, issues 1–3, pp. 264–274en
dc.referencesPerrons D. (2017), Social theory, economic geography, space and place: reflections on the work of Ray Hudson, “European Urban and Regional Studies”, vol. 24(2), pp. 133–137en
dc.referencesResch B., Sagl G., Törnros T., Bachmaier A., Eggers J.‑B., Herkel S., Narmsara S., Gündra H. (2014), GIS‑Based Planning and Modeling for Renewable Energy: Challenges and Future Research Avenues, “ISPRS International Journal of Geo‑Information”, no. 3, pp. 662–692.en
dc.referencesReynolds C. (1987), Flocks, herds and schools: A distributed behavioral model, SIGGRAPH ‘87: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques. Association for Computing Machinery, pp. 25–34en
dc.referencesRubinstein A. (2017), Comments on Economic Models, Economics, and Economists: Remarks on Economics Rules by Dani Rodrik, “Journal of Economic Literature”, vol. 55(1), pp. 162–172en
dc.referencesRydin Y., Bleahu A., Davies M., Dávila J. D., Friel S. (2015), Shaping cities for health: complexity and the planning of urban environments in the 21st century, “Lancet”, vol. 379, issue 9831, pp. 2079–2108en
dc.referencesSchelhorn T., O’Sullivan D., Haklay M., Thurstain‑Goodwin M. (1999), STREETS: an agent‑based pedestrian model, CASA Working Papers 9, Centre for Advanced Spatial Analysis UCL, London.en
dc.referencesSchelling T. C. (1971), Dynamic models of segregation, “The Journal of Mathematical Sociology”, vol. 1, no. 2, pp. 143–186en
dc.referencesSuh J., Kim S. M., Yi H., Choi Y. (2017), An Overview of GIS‑Based Modeling and Assessment of Mining‑Induced Hazards: Soil, Water, and Forest, “International Journal of Environmental Research and Public Health”, Nov 27, vol. 14(12), pp. 1463.en
dc.referencesTan Y., Xu H., Zhang X. (2016), Sustainable urbanization in China: a comprehensive literaturę review, “Cities”, no. 55, pp. 82–93.en
dc.referencesTesfatsion L. (2017), Modeling Economic Systems as Locally‑Constructive Sequential Games, “Journal of Economic Methodology”, vol. 24, issue 4, pp. 384–409.en
dc.referencesTseng F., Liu F., Furtado B. A. (2017), Humans of Simulated New York (HOSNY): an exploratory comprehensive model of city life, Cornell University Library, https://arxiv.org/abs/1703.05240en
dc.referencesTorrens P. M. (2018), A computational sandbox with human automata for exploring perceived egress safety in urban damage scenarios, “International Journal of Digital Earth”, vol. 11, issue 4, pp. 369–396,en
dc.referencesWilensky U. (1997), NetLogo Segregation model, Center for Connected Learning and Computer‑Based Modeling, Northwestern University, Evanston, http://ccl.northwestern.edu/netlogo/models/Segregation [accessed: 6.12.2019].en
dc.referencesWilensky U., Rand W. (2015), An Introduction to Agent‑Based Modeling, MIT Press, Cambridge–London.en
dc.referencesYang Y., Zhang S., Yang J., Bu K., Xing X. (2014), A review of historical reconstruction methods of land use/land cover, “Journal of Geographical Sciences”, vol. 24, issue 4, pp. 746–766.en
dc.referencesZia K., Farrahi K., Sharpanskykh A., Ferscha A., Muchnik L. (2013), Parallel and Distributed Simulation of Large‑Scale Cognitive Agents, [in:] Y. Demazeau, T. Ishida, J. M. Corchado, J. Bajo (eds.), Advances on Practical Applications of Agents and Multi‑Agent Systems. PAAMS 2013. Lecture Notes in Computer Science, vol. 7879, Springer, Berlin–Heidelberg.en
dc.contributor.authorEmailwozniac@gmail.com
dc.identifier.doi10.18778/0208-6018.346.01
dc.relation.volume1


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by/3.0/
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by/3.0/