Pokaż uproszczony rekord

dc.contributor.authorNiki, Satoru
dc.date.accessioned2021-05-05T15:57:50Z
dc.date.available2021-05-05T15:57:50Z
dc.date.issued2020-11-04
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/35376
dc.description.abstractWe investigate the relationship between M. De's empirical negation in Kripke and Beth Semantics. It turns out empirical negation, as well as co-negation, corresponds to different logics under different semantics. We then establish the relationship between logics related to these negations under unified syntax and semantics based on R. Sylvan's CCω.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;3en
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectempirical negationen
dc.subjectco-negationen
dc.subjectBeth semanticsen
dc.subjectKripke semanticsen
dc.subjectintuitionismen
dc.titleEmpirical Negation, Co-negation and Contraposition Rule I: Semantical Investigationsen
dc.typeOther
dc.page.number231-253
dc.contributor.authorAffiliationJapan Advanced Institute of Science and Technology School of Information Science 923-1292, 1-1 Asahidai, Nomi Ishikawa, Japanen
dc.identifier.eissn2449-836X
dc.references[1] L. E. J. Brouwer, Begründung der Mengenlehre unabhängig vom logischen Satz vom ausgeschlossenen Dritten. Zweiter Teil, [in:] A. Heyring (ed.), L.E.J. Brouwer Collected Works 1: Philosophy and Foundations of Mathematics, North-Holland (1975), pp. 191–221, DOI: http://dx.doi.org/10.1016/C2013-0-11893-4en
dc.references[2] J. L. Castiglioni, R. C. E. Biraben, Strict paraconsistency of truth-degree preserving intuitionistic logic with dual negation, Logic Journal of the IGPL, vol. 22(2) (2014), pp. 268–273, DOI: http://dx.doi.org/10.1093/jigpal/jzt027en
dc.references[3] M. De, Empirical Negation, Acta Analytica, vol. 28 (2013), pp. 49–69, DOI: http://dx.doi.org/10.1007/s12136-011-0138-9en
dc.references[4] M. De, H. Omori, More on Empirical Negation, [in:] R. Goreé, B. Kooi, A. Kurucz (eds.), Advances in Modal Logic, vol. 10, College Publications (2014), pp. 114–133.en
dc.references[5] K. Došen, Negation on the Light of Modal Logic, [in:] D. M. Gabbay, H. Wansing (eds.), What is Negation?, Kluwer Academic Publishing. (1999), DOI: http://dx.doi.org/10.1007/978-94-015-9309-04en
dc.references[6] T. M. Ferguson, Extensions of Priest-da Costa Logic, Studia Logica, vol. 102 (2013), pp. 145–174, DOI: http://dx.doi.org/10.1007/s11225-013-9469-4en
dc.references[7] A. B. Gordienko, A Paraconsistent Extension of Sylvan's Logic, Algebra and Logic, vol. 46(5) (2007), pp. 289–296, DOI: http://dx.doi.org/10.1007/s10469-007-0029-8en
dc.references[8] A. Heyting, Intuitionism: An Introduction, third revised ed., North Holland (1976).en
dc.references[9] M. Osorio, J. L. Carballido, C. Zepeda, J. A. Castellanos, Weakening and Extending Z, Logica Universalis, vol. 9(3) (2015), pp. 383–409, DOI: http://dx.doi.org/10.1007/s11787-015-0128-6en
dc.references[10] M. Osorio, J. A. C. Joo, Equivalence among RC-type paraconsistent logics, Logic Journal of the IGPL, vol. 25(2) (2017), pp. 239–252, DOI: http://dx.doi.org/10.1093/jigpal/jzw065en
dc.references[11] G. Priest, Dualising Intuitionistic Negation, Principia, vol. 13(2) (2009), pp. 165–184, DOI: http://dx.doi.org/10.5007/1808-1711.2009v13n2p165en
dc.references[12] C. Rauszer, A formalization of the propositional calculus of H-B logic, Studia Logica, vol. 33(1) (1974), pp. 23–34, DOI: http://dx.doi.org/10.1007/BF02120864en
dc.references[13] C. Rauszer, Applications of Kripke models to Heyting-Brouwer logic, Studia Logica, vol. 36(1) (1977), pp. 61–71, DOI: http://dx.doi.org/10.1007/BF02121115en
dc.references[14] G. Restall, Extending intuitionistic logic with subtraction (1997), unpublished.en
dc.references[15] R. Sylvan, Variations on da Costa C Systems and dual-intuitionistic logics I. Analyses of Cω and CCω, Studia Logica, vol. 49(1) (1990), pp. 47–65, DOI: http://dx.doi.org/10.1007/BF00401553en
dc.references[16] A. S. Troelstra, J. R. Moschovakis, A.S. Troelstra, D. van Dalen, Constructivism in Mathematics Corrections, URL: https://www.math.ucla.edu/~joan/ourTvDcorr030818 [accessed 20/Jul/2020].en
dc.references[17] A. S. Troelstra, D. van Dalen, Constructivism in Mathematics: An Introduction, vol. I, Elsevier (1988).en
dc.references[18] A. S. Troelstra, D. van Dalen, Constructivism in Mathematics: An Introduction, vol. II, Elsevier (1988).en
dc.references[19] D. van Dalen, L.E.J. Brouwer: Topologist, Intuitionist, Philosopher, Springer (2013), DOI: http://dx.doi.org/10.1007/978-1-4471-4616-2en
dc.contributor.authorEmailsatoruniki@jaist.ac.jp
dc.identifier.doi10.18778/0138-0680.2020.12
dc.relation.volume49


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

http://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako http://creativecommons.org/licenses/by-nc-nd/4.0