dc.contributor.author | Zajdel, Radosław | |
dc.contributor.author | Kozakiewicz, Marcin | |
dc.contributor.author | Gmyrek, Tomasz | |
dc.contributor.author | Konieczny, Bartłomiej | |
dc.date.accessioned | 2021-08-26T12:34:52Z | |
dc.date.available | 2021-08-26T12:34:52Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Kozakiewicz, M.; Gmyrek, T.; Zajdel, R.; Konieczny, B. Custom-Made Zirconium Dioxide Implants for Craniofacial Bone Reconstruction. Materials 2021, 14, 840. https://doi.org/10.3390/ma 14040840 | pl_PL |
dc.identifier.uri | http://hdl.handle.net/11089/38841 | |
dc.description.abstract | Reconstruction of the facial skeleton is challenging for surgeons because of difficulties in proper shape restoration and maintenance of the proper long-term effect. ZrO2 implant application can be a solution with many advantages (e.g., osseointegration, stability, and radio-opaqueness) and lacks the disadvantages of other biomaterials (e.g., metalosis, radiotransparency, and no osseointegration) or autologous bone (e.g., morbidity, resorption, and low accuracy). We aimed to evaluate the possibility of using ZrO2 implants as a new application of this material for craniofacial bone defect reconstruction. First, osteoblast (skeleton-related cell) cytotoxicity and genotoxicity were determined in vitro by comparing ZrO2 implants and alumina particle air-abraded ZrO2 implants to the following: 1. a titanium alloy (standard material); 2. ultrahigh-molecular-weight polyethylene (a modern material used in orbital surgery); 3. a negative control (minimally cytotoxic or genotoxic agent action); 4. a positive control (maximally cytotoxic or genotoxic agent action). Next, 14 custom in vivo clinical ZrO2 implants were manufactured for post-traumatologic periorbital region reconstruction. The soft tissue position improvement in photogrammetry was recorded, and clinical follow-up was conducted at least 6 years postoperatively. All the investigated materials revealed no cytotoxicity. Alumina particle air-abraded ZrO2 implants showed genotoxicity compared to those without subjection to air abrasion ZrO2, which were not genotoxic. The 6-month and 6- to 8-year clinical results were aesthetic and stable. Skeleton reconstructions using osseointegrated, radio-opaque, personalized implants comprising ZrO2 material are the next option for craniofacial surgery. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | MDPI | pl_PL |
dc.relation.ispartofseries | Materials;14 (4) | |
dc.rights | Uznanie autorstwa 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | zirconium dioxide | pl_PL |
dc.subject | custom implants | pl_PL |
dc.subject | ultrahigh molecular weight polyethylene | pl_PL |
dc.subject | titanium alloy | pl_PL |
dc.subject | craniofacial | pl_PL |
dc.subject | cytotoxicity | pl_PL |
dc.subject | genotoxicity | pl_PL |
dc.subject | maxillofacial surgery | pl_PL |
dc.subject | bone defect treatment | pl_PL |
dc.title | Custom-Made Zirconium Dioxide Implants for Craniofacial Bone Reconstruction | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 20 | pl_PL |
dc.contributor.authorAffiliation | Department of Informatics and Statistics, Medical University in Lodz, Pl. Hallera 1, 90-647 Łódź, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Maxillofacial Surgery, Medical University of Lodz, 113 Zeromskiego Str, 90-549 Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | University Laboratory of Materials Research, Medical University of Lodz, 251 Pomorska, 92-213 Lodz, Poland | pl_PL |
dc.references | Hoffmann, J.; Cornelius, C.P.; Groten, M.; Probster, L.; Pfannenberg, C.; Schwenzer, N. Orbital reconstruction with individually copy-milled ceramic implants. Plast. Reconstr. Surg. 1998, 101, 604–612. [ | pl_PL |
dc.references | Metzger, M.C.; Schon, R.; Weyer, N.; Rafii, A.; Gellrich, N.C.; Schmelzeisen, R.; Strong, B.E. Anatomical 3-dimensional pre-bent titanium implant for orbital floor fractures. Ophthalmology 2006, 113, 1863–1868 | pl_PL |
dc.references | Kozakiewicz, M.; Elgalal, M.; Walkowiak, B.; Stefanczyk, L. Technical concept of patient-specific, ultrahigh molecular weight polyethylene, orbital wall implant. J. Cranio-Maxillofac. Surg. 2013, 41, 282–290 | pl_PL |
dc.references | Lieger, O.; Richards, R.; Liu, M.; Lloyd, T. Computer-assisted design and manufacture of implants in the late reconstruction of extensive orbital fractures. Arch. Facial Plast. Surg. 2010, 12, 186–191 | pl_PL |
dc.references | Loba, P.; Kozakiewicz, M.; Elgalal, M.; Stefanczyk, L.; Broniarczyk-Loba, A.; Omulecki, W. The use of modern imaging techniques in the diagnosis and treatment planning of patients with orbital floor fractures. Med. Sci. Monit. 2011, 17, CS94–CS98 | pl_PL |
dc.references | Kozakiewicz, M.; Elgalal, M.; Loba, P.; Komunski, P.; Arkuszewski, P.; Broniarczyk-Loba, A.; Stefnczyk, L. Clinical application of 3D pre-bent titanium implants for orbital floor fractures. J. Cranio-Maxillofac. Surg. 2009, 37, 229–234. | pl_PL |
dc.references | Kozakiewicz, M.; Elgalal, M.; Piotr, L.; Broniarczyk-Loba, A.; Stefanczyk, L. Treatment with individual orbital wall implants in humans—1-Year ophthalmologic evaluation. J. Cranio-Maxillofac. Surg. 2011, 39, 30–36 | pl_PL |
dc.references | Potter, J.K.; Ellis, E. Biomaterials for reconstruction of the internal orbit. J. Oral. Maxillofac. Surg. 2004, 62, 1280–1297 | pl_PL |
dc.references | Manicone, P.F.; Rossi Iommetti, P.; Raffaelli, L. An overview of zirconia ceramics: Basic properties and clinical applications. J. Dent. 2007, 35, 819–826 | pl_PL |
dc.references | Piconi, C.; Maccauro, G. Zirconia as a ceramic biomaterial. Biomaterials 1999, 20, 1–25 | pl_PL |
dc.references | Warashina, H.; Sakano, S.; Kitamura, S.; Yamauchi, K.I.; Yamaguchi, J.; Ishiguro, N.; Hasegawa, Y. Biological reaction to alumina, zirconia, titanium and polyethylene particles implanted onto murine calvaria. Biomaterials 2003, 24, 3655–3661 | pl_PL |
dc.references | Degidi, M.; Artese, L.; Scarano, A.; Perrotti, V.; Gehrke, P.; Piattelli, A. Inflammatory infiltrate, microvessel density, nitric oxide synthase expression, vascular endothelial growth factor expression, and proliferative activity in peri-implant soft tissues around titanium and zirconium oxide healing caps. J. Periodontol. 2006, 77, 73–80 | pl_PL |
dc.references | Borys, J.; Maciejczyk, M.; Antonowicz, B.; Kretowski, A.; Waszkiel, D.; Bortnik, P.; Czarniecka-Bargłowska, K.; Kocisz, M.; Szulimowska, J.; Czajkowski, M.; et al. Exposure to Ti4Al4V titanium alloy leads to redox abnormalities, oxidative stress, and oxidative damage in patients treated for mandible fractures. Oxidative Med. Cell. Longev. 2018, 2018, 1–10 | pl_PL |
dc.references | Kozakiewicz, M.; Wach, T.; Szymor, P.; Zieli ´nski, R. Two different techniques of manufacturing TMJ replacements—A technical report. J. Cranio-Maxillofac. Surg. 2017, 45, 1432–1437 | pl_PL |
dc.references | ISO 5834-1:2005/COR 1:2007. In Implants for Surgery—Ultra-High-Molecular-Weight Polyethylene—Part 1: Powder form—Technical Corrigendum 1; International Organization for Standardization: Geneva, Switzerland, 2007 | pl_PL |
dc.references | ISO 5834-2:2006. In Implants for Surgery—Ultra-High-Molecular-Weight Polyethylene—Part 2: Moulded Forms; International Organization for Standardization: Geneva, Switzerland, 2006 | pl_PL |
dc.references | ASTM F 648-07. In Standard Specification for Ultra-High-Molecular-Weight Polyethylene Powder and Fabricated Form for Surgical Implants; ASTM International: West Conshohocken, PA, USA, 2007. | pl_PL |
dc.references | Kozakiewicz, M. Computer-aided orbital wall defects treatment by individual design ultrahigh molecular weight polyethylene implants. J. Cranio-Maxillofac. Surg. 2014, 42, 283–289. | pl_PL |
dc.references | Tessier, P. The conjunctival approach to the orbital floor and maxilla in congenital malformation and trauma. J. Maxillofac. Surg. 1973, 1, 3–8 | pl_PL |
dc.references | Markowska-Szczupak, A.; Endo-Kimura, M.; Paszkiewicz, O.; Kowalska, E. Are Titania Photocatalysts and Titanium Implants Safe? Review on the Toxicity of Titanium Compounds. Nanomaterials (Basel) 2020, 10, 2065. | pl_PL |
dc.references | López-Jornet, P.; Perrez, F.P.; Calvo-Guirado, J.L.; Ros-Llor, I.; Ramírez-Fernández, P. Metallic ion content and damage to the DNA in oral mucosa cells patients treated dental implants. J. Mater. Sci. Mater. Med. 2014, 25, 1819–1824. | pl_PL |
dc.references | Liao, H.; Wurtz, T.; Li, J. Influence of titanium ion on mineral formation and properties of osteoid nodules in rat calvaria cultures. J. Biomed. Mater. Res. 1999, 47, 220–227 | pl_PL |
dc.references | Borys, J.; Maciejczyk, M.; Antonowicz, B.; Kretowski, A.; Sidun, J.; Domel, E.; D ˛abrowski, J.; Ładny, J.R.; Morawska, K.; Zalewska, A. Glutathione metabolism, mitochondria activity, and nitrosative stress in patients treated for mandible fractures. J. Clin. Med. 2019, 8, 127. | pl_PL |
dc.references | Obando-Pereda, G.A.; Fischer, L.; Stach-Machado, D.R. Titanium and zirconia particle-induced pro-inflammatory gene expression in cultured macrophages and osteolysis, inflammatory hyperalgesia and edema in vivo. Life Sci. 2014, 97, 96–106 | pl_PL |
dc.references | Attarilar, S.; Yang, J.; Ebrahimi, M.; Wang, Q.; Liu, J.; Tang, Y.; Yang, J. The Toxicity Phenomenon and the Related Occurrence in Metal and Metal Oxide Nanoparticles: A Brief Review from the Biomedical Perspective. Front. Bioeng. Biotechnol. 2020, 8, 822 | pl_PL |
dc.references | Zhang, X.Q.; Yin, L.H.; Tang, M.; Pu, Y.P. ZnO, TiO(2), SiO(2,) and Al(2)O(3) nanoparticles-induced toxic effects on human fetal lung fibroblasts. Biomed. Environ. Sci. 2011, 24, 661–669. | pl_PL |
dc.references | Ansari, M.A.; Khan, H.M.; Khan, A.A.; Cameotra, S.S.; Saquib, Q.; Musarrat, J. Interaction of Al2O3 nanoparticles with Escherichia coli and their cell envelope biomolecules. J. Appl. Microbiol. 2013, 116, 772–783 | pl_PL |
dc.references | Palka, L.; Mazurek-Popczyk, J.; Arkusz, K.; Baldy-Chudzik, K. Susceptibility to biofilm formation on 3D-printed titanium fixation plates used in the mandible: A preliminary study. J. Oral. Microbiol. 2020, 12, 1838164 | pl_PL |
dc.references | Skinner, H.B. Review Ceramic bearing surfaces. Clin. Orthop. Relat. Res. 1999, 83–91. | pl_PL |
dc.references | Bierbaum, B.E.; Nairus, J.; Kuesis, D.; Morrison, J.C.; Ward, D. Ceramic-on-ceramic bearings in total hip arthroplasty. Clin. Orthop. Relat. Res. 2002, 158–163 | pl_PL |
dc.references | Min, B.W.; Song, K.S.; Kang, C.H.; Bae, K.C.; Won, Y.Y.; Lee, K.Y. Delayed fracture of a ceramic insert with modern ceramic total hip replacement. J. Arthroplast. 2007, 22, 136–139 | pl_PL |
dc.references | Klein, M.; Glatzer, C. Individual CAD/CAM fabricated glass-bioceramic implants in reconstructive surgery of the bony orbital floor. Plast. Reconstr. Surg. 2006, 117, 565–570 | pl_PL |
dc.references | Converse, J.M.; Smith, B.; Obear, M.F.; Wood-Smith, D. Orbital blowout fractures: A ten-year survey. Plast. Reconstr. Surg. 1967, 39, 20–36 | pl_PL |
dc.references | Koornneef, L. Details of the orbital connective tissue system in the adult. Acta Morphol. Neerl. Scand. 1977, 15, 1–34 | pl_PL |
dc.references | Bartkowski, S.B.; Kurek, M.; Stypulkowska, J.; Krzystkowa, K.M.; Zapala, J. Foreign bodies in the orbit. Review of 20 cases. J. Maxillofac. Surg. 1984, 12, 97–102 | pl_PL |
dc.references | Galiè, M.; Consorti, G.; Clauser, L.C.; Kawamoto, H.K. Craniofacial surgical strategies for the correction of pneumosinus dilatans frontalis. J. Cranio-Maxillofac. Surg. 2013, 41, 28–33. | pl_PL |
dc.references | Tieghi, R.; Consorti, G.; Banchini, S.; Elia, G.; Illiano, F.; Clauser, L.C. Cranial bone grafts in forehead reconstruction after resection for benign tumors. J. Craniofac. Surg. 2013, 24, 505–507. | pl_PL |
dc.references | Ellis, E., 3rd; Tan, Y. Assessment of internal orbital reconstructions for pure blowout fractures: Cranial bone grafts versus titanium mesh. J. Oral Maxillofac. Surg. 2003, 61, 442–453 | pl_PL |
dc.references | Dougherty, W.R.; Wellisz, T. The natural history of alloplastic implants in orbital floor reconstruction: An animal model. J. Craniofac. Surg. 1994, 5, 26–33 | pl_PL |
dc.references | Hemprich, A.; Breier, T. Secondary correction of traumatogenic enophthalmos with auto- and alloplastic implants. Rev. Stomatol. Chir. Maxillofac. 1993, 94, 37–39. | pl_PL |
dc.references | Kozakiewicz, M.; Elgalal, M.; Piotr, L.; Broniarczyk-Loba, A.; Stefanczyk, L. Patient specific implants, designed using Rapied Prototyping and diagnostic imaging, for the repair of orbital fractures. Med. Sci. Monit. 2010, 16, 75–79. | pl_PL |
dc.references | Cavalcanti, A.N.; Foxton, R.M.; Watson, T.F.; Oliveira, M.T.; Giannini, M.; Marchi, G.M. Y-TZP ceramics: Key concepts for clinical application. Oper. Dent. 2009, 34, 344–351 | pl_PL |
dc.references | Wenz, H.J.; Bartsch, J.; Wolfart, S.; Kern, M. Osseointegration and clinical success of zirconia dental implants: A systematic review. Int. J. Prosthodont. 2008, 21, 27–36. | pl_PL |
dc.references | Andreiotelli, M.; Wenz, H.J.; Kohal, R.J. Are ceramic implants a viable alternative to titanium implants? A systematic literature review. Clin. Oral Implants Res. 2009, 20 (Suppl. 4), 32–47 | pl_PL |
dc.references | Candido, L.; Miotto, L.; Fais, L.; Cesar, P.; Pinelli, L. Mechanical and Surface Properties of Monolithic Zirconia. Operat. Dent. 2018, 43, E119–E128 | pl_PL |
dc.references | Stawarczyk, B.; Emslander, A.; Roos, M.; Sener, B.; Noack, F.; Keul, C. Zirconia ceramics, their contrast ratio and grain size depending on sintering parameters. Dent. Mat. J. 2014, 33, 591–598 | pl_PL |
dc.references | Keen, M. Complications of harvesting cranial bone grafts. Plast. Reconstr. Surg. 1995, 96, 1753 | pl_PL |
dc.references | Glassman, R.D.; Manson, P.N.; Vanderkolk, C.A.; Iliff, N.T.; Yaremchuk, M.J.; Petty, P.; Defresne, C.R.; Markowitz, B.L. Rigid fixation of internal orbital fractures. Plast. Reconstr. Surg. 1990, 86, 1103–1111. | pl_PL |
dc.references | Ghayor, C.; Weber, F.E. Osteoconductive Microarchitecture of Bone Substitutes for Bone Regeneration Revisited. Front. Physiol. 2018, 9, 960 | pl_PL |
dc.references | Clauser, L.C.; Tieghi, R.; Galiè, M.; Carinci, F. Structural fat grafting: Facial volumetric restoration in complex reconstructive surgery. J. Craniofac. Surg. 2011, 22, 1695–1701 | pl_PL |
dc.references | Coleman, S.R. Facial augmentation with structural fat grafting. Clin. Plast. Surg. 2006, 33, 567–577 | pl_PL |
dc.references | Consorti, G.; Tieghi, R.; Clauser, L.C. Frontal linear scleroderma: Long-term result in volumetric restoration of the fronto-orbital area by structural fat grafting. J. Craniofac. Surg. 2012, 23, 263–265. | pl_PL |
dc.discipline | nauki medyczne | pl_PL |