Show simple item record

dc.contributor.authorZajdel, Radosław
dc.contributor.authorKozakiewicz, Marcin
dc.contributor.authorGmyrek, Tomasz
dc.contributor.authorKonieczny, Bartłomiej
dc.identifier.citationKozakiewicz, M.; Gmyrek, T.; Zajdel, R.; Konieczny, B. Custom-Made Zirconium Dioxide Implants for Craniofacial Bone Reconstruction. Materials 2021, 14, 840. 14040840pl_PL
dc.description.abstractReconstruction of the facial skeleton is challenging for surgeons because of difficulties in proper shape restoration and maintenance of the proper long-term effect. ZrO2 implant application can be a solution with many advantages (e.g., osseointegration, stability, and radio-opaqueness) and lacks the disadvantages of other biomaterials (e.g., metalosis, radiotransparency, and no osseointegration) or autologous bone (e.g., morbidity, resorption, and low accuracy). We aimed to evaluate the possibility of using ZrO2 implants as a new application of this material for craniofacial bone defect reconstruction. First, osteoblast (skeleton-related cell) cytotoxicity and genotoxicity were determined in vitro by comparing ZrO2 implants and alumina particle air-abraded ZrO2 implants to the following: 1. a titanium alloy (standard material); 2. ultrahigh-molecular-weight polyethylene (a modern material used in orbital surgery); 3. a negative control (minimally cytotoxic or genotoxic agent action); 4. a positive control (maximally cytotoxic or genotoxic agent action). Next, 14 custom in vivo clinical ZrO2 implants were manufactured for post-traumatologic periorbital region reconstruction. The soft tissue position improvement in photogrammetry was recorded, and clinical follow-up was conducted at least 6 years postoperatively. All the investigated materials revealed no cytotoxicity. Alumina particle air-abraded ZrO2 implants showed genotoxicity compared to those without subjection to air abrasion ZrO2, which were not genotoxic. The 6-month and 6- to 8-year clinical results were aesthetic and stable. Skeleton reconstructions using osseointegrated, radio-opaque, personalized implants comprising ZrO2 material are the next option for craniofacial surgery.pl_PL
dc.relation.ispartofseriesMaterials;14 (4)
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.subjectzirconium dioxidepl_PL
dc.subjectcustom implantspl_PL
dc.subjectultrahigh molecular weight polyethylenepl_PL
dc.subjecttitanium alloypl_PL
dc.subjectmaxillofacial surgerypl_PL
dc.subjectbone defect treatmentpl_PL
dc.titleCustom-Made Zirconium Dioxide Implants for Craniofacial Bone Reconstructionpl_PL
dc.contributor.authorAffiliationDepartment of Informatics and Statistics, Medical University in Lodz, Pl. Hallera 1, 90-647 Łódź, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Maxillofacial Surgery, Medical University of Lodz, 113 Zeromskiego Str, 90-549 Lodz, Polandpl_PL
dc.contributor.authorAffiliationUniversity Laboratory of Materials Research, Medical University of Lodz, 251 Pomorska, 92-213 Lodz, Polandpl_PL
dc.referencesHoffmann, J.; Cornelius, C.P.; Groten, M.; Probster, L.; Pfannenberg, C.; Schwenzer, N. Orbital reconstruction with individually copy-milled ceramic implants. Plast. Reconstr. Surg. 1998, 101, 604–612. [pl_PL
dc.referencesMetzger, M.C.; Schon, R.; Weyer, N.; Rafii, A.; Gellrich, N.C.; Schmelzeisen, R.; Strong, B.E. Anatomical 3-dimensional pre-bent titanium implant for orbital floor fractures. Ophthalmology 2006, 113, 1863–1868pl_PL
dc.referencesKozakiewicz, M.; Elgalal, M.; Walkowiak, B.; Stefanczyk, L. Technical concept of patient-specific, ultrahigh molecular weight polyethylene, orbital wall implant. J. Cranio-Maxillofac. Surg. 2013, 41, 282–290pl_PL
dc.referencesLieger, O.; Richards, R.; Liu, M.; Lloyd, T. Computer-assisted design and manufacture of implants in the late reconstruction of extensive orbital fractures. Arch. Facial Plast. Surg. 2010, 12, 186–191pl_PL
dc.referencesLoba, P.; Kozakiewicz, M.; Elgalal, M.; Stefanczyk, L.; Broniarczyk-Loba, A.; Omulecki, W. The use of modern imaging techniques in the diagnosis and treatment planning of patients with orbital floor fractures. Med. Sci. Monit. 2011, 17, CS94–CS98pl_PL
dc.referencesKozakiewicz, M.; Elgalal, M.; Loba, P.; Komunski, P.; Arkuszewski, P.; Broniarczyk-Loba, A.; Stefnczyk, L. Clinical application of 3D pre-bent titanium implants for orbital floor fractures. J. Cranio-Maxillofac. Surg. 2009, 37, 229–234.pl_PL
dc.referencesKozakiewicz, M.; Elgalal, M.; Piotr, L.; Broniarczyk-Loba, A.; Stefanczyk, L. Treatment with individual orbital wall implants in humans—1-Year ophthalmologic evaluation. J. Cranio-Maxillofac. Surg. 2011, 39, 30–36pl_PL
dc.referencesPotter, J.K.; Ellis, E. Biomaterials for reconstruction of the internal orbit. J. Oral. Maxillofac. Surg. 2004, 62, 1280–1297pl_PL
dc.referencesManicone, P.F.; Rossi Iommetti, P.; Raffaelli, L. An overview of zirconia ceramics: Basic properties and clinical applications. J. Dent. 2007, 35, 819–826pl_PL
dc.referencesPiconi, C.; Maccauro, G. Zirconia as a ceramic biomaterial. Biomaterials 1999, 20, 1–25pl_PL
dc.referencesWarashina, H.; Sakano, S.; Kitamura, S.; Yamauchi, K.I.; Yamaguchi, J.; Ishiguro, N.; Hasegawa, Y. Biological reaction to alumina, zirconia, titanium and polyethylene particles implanted onto murine calvaria. Biomaterials 2003, 24, 3655–3661pl_PL
dc.referencesDegidi, M.; Artese, L.; Scarano, A.; Perrotti, V.; Gehrke, P.; Piattelli, A. Inflammatory infiltrate, microvessel density, nitric oxide synthase expression, vascular endothelial growth factor expression, and proliferative activity in peri-implant soft tissues around titanium and zirconium oxide healing caps. J. Periodontol. 2006, 77, 73–80pl_PL
dc.referencesBorys, J.; Maciejczyk, M.; Antonowicz, B.; Kretowski, A.; Waszkiel, D.; Bortnik, P.; Czarniecka-Bargłowska, K.; Kocisz, M.; Szulimowska, J.; Czajkowski, M.; et al. Exposure to Ti4Al4V titanium alloy leads to redox abnormalities, oxidative stress, and oxidative damage in patients treated for mandible fractures. Oxidative Med. Cell. Longev. 2018, 2018, 1–10pl_PL
dc.referencesKozakiewicz, M.; Wach, T.; Szymor, P.; Zieli ´nski, R. Two different techniques of manufacturing TMJ replacements—A technical report. J. Cranio-Maxillofac. Surg. 2017, 45, 1432–1437pl_PL
dc.referencesISO 5834-1:2005/COR 1:2007. In Implants for Surgery—Ultra-High-Molecular-Weight Polyethylene—Part 1: Powder form—Technical Corrigendum 1; International Organization for Standardization: Geneva, Switzerland, 2007pl_PL
dc.referencesISO 5834-2:2006. In Implants for Surgery—Ultra-High-Molecular-Weight Polyethylene—Part 2: Moulded Forms; International Organization for Standardization: Geneva, Switzerland, 2006pl_PL
dc.referencesASTM F 648-07. In Standard Specification for Ultra-High-Molecular-Weight Polyethylene Powder and Fabricated Form for Surgical Implants; ASTM International: West Conshohocken, PA, USA, 2007.pl_PL
dc.referencesKozakiewicz, M. Computer-aided orbital wall defects treatment by individual design ultrahigh molecular weight polyethylene implants. J. Cranio-Maxillofac. Surg. 2014, 42, 283–289.pl_PL
dc.referencesTessier, P. The conjunctival approach to the orbital floor and maxilla in congenital malformation and trauma. J. Maxillofac. Surg. 1973, 1, 3–8pl_PL
dc.referencesMarkowska-Szczupak, A.; Endo-Kimura, M.; Paszkiewicz, O.; Kowalska, E. Are Titania Photocatalysts and Titanium Implants Safe? Review on the Toxicity of Titanium Compounds. Nanomaterials (Basel) 2020, 10, 2065.pl_PL
dc.referencesLópez-Jornet, P.; Perrez, F.P.; Calvo-Guirado, J.L.; Ros-Llor, I.; Ramírez-Fernández, P. Metallic ion content and damage to the DNA in oral mucosa cells patients treated dental implants. J. Mater. Sci. Mater. Med. 2014, 25, 1819–1824.pl_PL
dc.referencesLiao, H.; Wurtz, T.; Li, J. Influence of titanium ion on mineral formation and properties of osteoid nodules in rat calvaria cultures. J. Biomed. Mater. Res. 1999, 47, 220–227pl_PL
dc.referencesBorys, J.; Maciejczyk, M.; Antonowicz, B.; Kretowski, A.; Sidun, J.; Domel, E.; D ˛abrowski, J.; Ładny, J.R.; Morawska, K.; Zalewska, A. Glutathione metabolism, mitochondria activity, and nitrosative stress in patients treated for mandible fractures. J. Clin. Med. 2019, 8, 127.pl_PL
dc.referencesObando-Pereda, G.A.; Fischer, L.; Stach-Machado, D.R. Titanium and zirconia particle-induced pro-inflammatory gene expression in cultured macrophages and osteolysis, inflammatory hyperalgesia and edema in vivo. Life Sci. 2014, 97, 96–106pl_PL
dc.referencesAttarilar, S.; Yang, J.; Ebrahimi, M.; Wang, Q.; Liu, J.; Tang, Y.; Yang, J. The Toxicity Phenomenon and the Related Occurrence in Metal and Metal Oxide Nanoparticles: A Brief Review from the Biomedical Perspective. Front. Bioeng. Biotechnol. 2020, 8, 822pl_PL
dc.referencesZhang, X.Q.; Yin, L.H.; Tang, M.; Pu, Y.P. ZnO, TiO(2), SiO(2,) and Al(2)O(3) nanoparticles-induced toxic effects on human fetal lung fibroblasts. Biomed. Environ. Sci. 2011, 24, 661–669.pl_PL
dc.referencesAnsari, M.A.; Khan, H.M.; Khan, A.A.; Cameotra, S.S.; Saquib, Q.; Musarrat, J. Interaction of Al2O3 nanoparticles with Escherichia coli and their cell envelope biomolecules. J. Appl. Microbiol. 2013, 116, 772–783pl_PL
dc.referencesPalka, L.; Mazurek-Popczyk, J.; Arkusz, K.; Baldy-Chudzik, K. Susceptibility to biofilm formation on 3D-printed titanium fixation plates used in the mandible: A preliminary study. J. Oral. Microbiol. 2020, 12, 1838164pl_PL
dc.referencesSkinner, H.B. Review Ceramic bearing surfaces. Clin. Orthop. Relat. Res. 1999, 83–91.pl_PL
dc.referencesBierbaum, B.E.; Nairus, J.; Kuesis, D.; Morrison, J.C.; Ward, D. Ceramic-on-ceramic bearings in total hip arthroplasty. Clin. Orthop. Relat. Res. 2002, 158–163pl_PL
dc.referencesMin, B.W.; Song, K.S.; Kang, C.H.; Bae, K.C.; Won, Y.Y.; Lee, K.Y. Delayed fracture of a ceramic insert with modern ceramic total hip replacement. J. Arthroplast. 2007, 22, 136–139pl_PL
dc.referencesKlein, M.; Glatzer, C. Individual CAD/CAM fabricated glass-bioceramic implants in reconstructive surgery of the bony orbital floor. Plast. Reconstr. Surg. 2006, 117, 565–570pl_PL
dc.referencesConverse, J.M.; Smith, B.; Obear, M.F.; Wood-Smith, D. Orbital blowout fractures: A ten-year survey. Plast. Reconstr. Surg. 1967, 39, 20–36pl_PL
dc.referencesKoornneef, L. Details of the orbital connective tissue system in the adult. Acta Morphol. Neerl. Scand. 1977, 15, 1–34pl_PL
dc.referencesBartkowski, S.B.; Kurek, M.; Stypulkowska, J.; Krzystkowa, K.M.; Zapala, J. Foreign bodies in the orbit. Review of 20 cases. J. Maxillofac. Surg. 1984, 12, 97–102pl_PL
dc.referencesGaliè, M.; Consorti, G.; Clauser, L.C.; Kawamoto, H.K. Craniofacial surgical strategies for the correction of pneumosinus dilatans frontalis. J. Cranio-Maxillofac. Surg. 2013, 41, 28–33.pl_PL
dc.referencesTieghi, R.; Consorti, G.; Banchini, S.; Elia, G.; Illiano, F.; Clauser, L.C. Cranial bone grafts in forehead reconstruction after resection for benign tumors. J. Craniofac. Surg. 2013, 24, 505–507.pl_PL
dc.referencesEllis, E., 3rd; Tan, Y. Assessment of internal orbital reconstructions for pure blowout fractures: Cranial bone grafts versus titanium mesh. J. Oral Maxillofac. Surg. 2003, 61, 442–453pl_PL
dc.referencesDougherty, W.R.; Wellisz, T. The natural history of alloplastic implants in orbital floor reconstruction: An animal model. J. Craniofac. Surg. 1994, 5, 26–33pl_PL
dc.referencesHemprich, A.; Breier, T. Secondary correction of traumatogenic enophthalmos with auto- and alloplastic implants. Rev. Stomatol. Chir. Maxillofac. 1993, 94, 37–39.pl_PL
dc.referencesKozakiewicz, M.; Elgalal, M.; Piotr, L.; Broniarczyk-Loba, A.; Stefanczyk, L. Patient specific implants, designed using Rapied Prototyping and diagnostic imaging, for the repair of orbital fractures. Med. Sci. Monit. 2010, 16, 75–79.pl_PL
dc.referencesCavalcanti, A.N.; Foxton, R.M.; Watson, T.F.; Oliveira, M.T.; Giannini, M.; Marchi, G.M. Y-TZP ceramics: Key concepts for clinical application. Oper. Dent. 2009, 34, 344–351pl_PL
dc.referencesWenz, H.J.; Bartsch, J.; Wolfart, S.; Kern, M. Osseointegration and clinical success of zirconia dental implants: A systematic review. Int. J. Prosthodont. 2008, 21, 27–36.pl_PL
dc.referencesAndreiotelli, M.; Wenz, H.J.; Kohal, R.J. Are ceramic implants a viable alternative to titanium implants? A systematic literature review. Clin. Oral Implants Res. 2009, 20 (Suppl. 4), 32–47pl_PL
dc.referencesCandido, L.; Miotto, L.; Fais, L.; Cesar, P.; Pinelli, L. Mechanical and Surface Properties of Monolithic Zirconia. Operat. Dent. 2018, 43, E119–E128pl_PL
dc.referencesStawarczyk, B.; Emslander, A.; Roos, M.; Sener, B.; Noack, F.; Keul, C. Zirconia ceramics, their contrast ratio and grain size depending on sintering parameters. Dent. Mat. J. 2014, 33, 591–598pl_PL
dc.referencesKeen, M. Complications of harvesting cranial bone grafts. Plast. Reconstr. Surg. 1995, 96, 1753pl_PL
dc.referencesGlassman, R.D.; Manson, P.N.; Vanderkolk, C.A.; Iliff, N.T.; Yaremchuk, M.J.; Petty, P.; Defresne, C.R.; Markowitz, B.L. Rigid fixation of internal orbital fractures. Plast. Reconstr. Surg. 1990, 86, 1103–1111.pl_PL
dc.referencesGhayor, C.; Weber, F.E. Osteoconductive Microarchitecture of Bone Substitutes for Bone Regeneration Revisited. Front. Physiol. 2018, 9, 960pl_PL
dc.referencesClauser, L.C.; Tieghi, R.; Galiè, M.; Carinci, F. Structural fat grafting: Facial volumetric restoration in complex reconstructive surgery. J. Craniofac. Surg. 2011, 22, 1695–1701pl_PL
dc.referencesColeman, S.R. Facial augmentation with structural fat grafting. Clin. Plast. Surg. 2006, 33, 567–577pl_PL
dc.referencesConsorti, G.; Tieghi, R.; Clauser, L.C. Frontal linear scleroderma: Long-term result in volumetric restoration of the fronto-orbital area by structural fat grafting. J. Craniofac. Surg. 2012, 23, 263–265.pl_PL
dc.disciplinenauki medycznepl_PL

Files in this item


This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa 4.0 Międzynarodowe
Except where otherwise noted, this item's license is described as Uznanie autorstwa 4.0 Międzynarodowe