dc.contributor.author | Sztandera, Krzysztof | |
dc.date.accessioned | 2021-09-30T17:13:07Z | |
dc.date.available | 2021-09-30T17:13:07Z | |
dc.date.issued | 2021-09-29 | |
dc.identifier.issn | 1730-2366 | |
dc.identifier.uri | http://hdl.handle.net/11089/39289 | |
dc.description.abstract | Due to its fluorescent and phototoxic properties, rose bengal (RB) is used in photodynamic therapy. To improve the delivery of RB to its site of action, the application of nanocarrier systems has been proposed. The most promising approach includes the use of pH-responsive nanoparticles. To evaluate the pattern of drug release in different buffers, equilibrium dialysis is commonly used. Here, we used water and two buffers to determine the impact of solvent composition on the aggregation and dialysis rate of RB through a cellulose membrane. The results show that buffer composition does not influence the fluorescent properties of RB. However, the presence of additional ions causes a change in diffusion rate that is most probably linked to the size of RB aggregates. | en |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Acta Universitatis Lodziensis. Folia Biologica et Oecologica | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | nanocarriers | en |
dc.subject | dialysis | en |
dc.subject | rose bengal | en |
dc.subject | photodynamic therapy | en |
dc.title | Buffer composition affects rose bengal dialysis rate through cellulose membrane | en |
dc.type | Article | |
dc.page.number | 32-36 | |
dc.contributor.authorAffiliation | University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biophysics, Pomorska 141/143, 90-236 Lodz, Poland | en |
dc.identifier.eissn | 2083-8484 | |
dc.references | Alexander, W. 2010. American Society of Clinical Oncology, 2010 Annual Meeting and rose bengal: from a wool dye to a cancer therapy. Pharmacy and Therapeutics, 35: 469–474. | en |
dc.references | Allison, R.R., Downie, G.H., Cuenca, R., Hu, X.H., Childs, C.J.H., Sibata, C.H. 2004. Photosensitizers in clinical PDT. Photodiagnosis and Photodynamic Therapy 1(1): 27–42. | en |
dc.references | Apartsin, E., Knauer, N., Arkhipova, V., Pashkina, E., Aktanova, A., Poletaeva, J., Sánchez-Nieves, J., de la Mata, F.J., Gómez, R. 2020. pH-sensitive dendrimersomes of hybrid triazine-carbosilane dendritic amphiphiles-smart vehicles for drug delivery. Nanomaterials 10(10): 1–15. | en |
dc.references | Bron, A.J., Evans, V.E., Smith, J.A. 2003. Grading of corneal and conjunctival staining in the context of other dry eye tests. Cornea 22(7): 640–650. | en |
dc.references | Capinera, J.L., Squitier, J.M. 2000. Insecticidal activity of photoactive dyes to American and migratory grasshoppers (Orthoptera: Acrididae). Journal of Economic Entomology 93(3): 662–666. | en |
dc.references | Cold Spring Harbor Protocols. 2006. Phosphate-buffered saline (PBS). Cold Spring Harbor Protocols 2006(1): pdb.rec8247. | en |
dc.references | Cossu, A., Ercan, D., Tikekar, R.V., Nitin, N. 2016. Antimicrobial effect of photosensitized rose bengal on bacteria and viruses in model wash water. Food and Bioprocess Technology 9(3): 441–451. | en |
dc.references | Dabrzalska, M., Janaszewska, A., Zablocka, M., Mignani, S., Majoral, J.P., Klajnert-Maculewicz, B. 2017. Cationic phosphorus dendrimer enhances photodynamic activity of rose bengal against basal cell carcinoma cell lines. Molecular Pharmaceutics 14(5): 1821–1830. | en |
dc.references | Gianotti, E., Estevão, B.M., Cucinotta, F., Hioka, N., Rizzi, M., Renò, F., Marchese, L. 2014. An efficient rose bengal based nanoplatform for photodynamic therapy. Chemistry – A European Journal 20(35): 10921–10925. | en |
dc.references | Haney, P., Herting, K., Smith, S. 2013. Separation characteristics of dialysis membranes. Pierce previews. Pierce Protein Biology Products, 2–6. | en |
dc.references | Karimi, M., Eslami, M., Sahandi-Zangabad, P., Mirab, F., Farajisafiloo, N., Shafaei, Z., Ghosh, D., Bozorgomid, M., Dashkhaneh, F., Hamblin, M.R. 2016. pH-sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 8(5): 696–716. | en |
dc.references | Patel, S.P., Carter, B.W., Murthy, R., Sheth, R., Agarwala, S.S., Lu, G., Redstone, E., Balmes, G.S., Rider, H., Rodrigues, D., Wachter, E.A. 2020. Percutaneous hepatic injection of rose bengal disodium (PV-10) in metastatic uveal melanoma. Journal of Clinical Oncology 38(15 suppl): 3143. | en |
dc.references | Patri, A.K., Kukowska-Latallo, J.F., Baker, J.R. 2005. Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Advanced Drug Delivery Reviews 57(15): 2203–2214. | en |
dc.references | Qin, J., Kunda, N., Qiao, G., Calata, J.F., Pardiwala, K., Prabhakar, B.S., Maker, A.V. 2017. Colon cancer cell treatment with rose bengal generates a protective immune response via immunogenic cell death. Cell Death and Disease 8(2): e2584. | en |
dc.references | Snyder, C., Paugh, J.R. 1998. Rose bengal dye concentration and volume delivered via dye-impregnated paper strips. Optometry and Vision Science 75 (5): 339–341. | en |
dc.references | Sztandera, K., Działak, P., Marcinkowska, M., Stańczyk, M., Gorzkiewicz, M., Janaszewska, A., Klajnert-Maculewicz, B. 2019. Sugar modification enhances cytotoxic activity of PAMAM-doxorubicin conjugate in glucose-deprived MCF-7 cells – possible role of GLUT1 transporter. Pharmaceutical Research 36(10): 1–11. | en |
dc.references | Sztandera, K., Gorzkiewicz, M., Klajnert-Maculewicz, B. 2020. Nanocarriers in photodynamic therapy – in vitro and in vivo studies. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 12(3): 1–24. | en |
dc.references | Villani, S., Adami, R., Reverchon, E., Ferretti, A.M., Ponti, A., Lepretti, M., Caputo, I., Izzo, L. 2017. pH-sensitive polymersomes: controlling swelling via copolymer structure and chemical composition. Journal of Drug Targeting 25(9–10): 899–909. | en |
dc.references | Wu, H., Zhu, L., Torchilin, V.P. 2013. pH-sensitive poly(histidine)-PEG/DSPE-PEG co-polymer micelles for cytosolic drug delivery. Biomaterials 34(4): 1213–1222. | en |
dc.contributor.authorEmail | krzysztof.sztandera@edu.uni.lodz.pl | |
dc.identifier.doi | 10.18778/1730-2366.16.11 | |
dc.relation.volume | 17 | |