Pokaż uproszczony rekord

dc.contributor.authorMikucka, Wioleta
dc.contributor.authorZielińska, Magdalena
dc.date.accessioned2021-09-30T17:13:08Z
dc.date.available2021-09-30T17:13:08Z
dc.date.issued2021-09-29
dc.identifier.issn1730-2366
dc.identifier.urihttp://hdl.handle.net/11089/39293
dc.description.abstractThe increase in the costs of storage and disposal of post-production residues has resulted in the search for new directions for their recycling, which is closely related to the necessity of protecting the natural environment and promoting a circular economy. Moreover, the apparent interest shown by the food market in raw materials with high antioxidant activity implies an increasing use of by-products. The objective of the study was to determine the effect of the type and concentration of the solvent on the efficiency of extracting polyphenols from distillery stillage as well as their antioxidant activity by using several solvents: methanol:water (70:30 v/v), methanol:water (100:0 v/v), ethanol:water (70:30 v/v) or ethanol:water (100:0 v/v). The DPPH radical method was used to determine the antioxidant activity of the obtained extracts. The normalised variable (NV) and statistical measure (MS) were determined, based on which the effectiveness of the solvents was evaluated. The highest polyphenolic content and the antioxidant activity were obtained by using ethanol:water (70:30 v/v) as a solvent in the extraction of polyphenolic compounds from distillery stillage.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesActa Universitatis Lodziensis. Folia Biologica et Oecologicaen
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectDPPH assayen
dc.subjectFolin-Ciocalteuen
dc.subjectphenolic contenten
dc.subjectmethanolic extracten
dc.subjectethanolic extracten
dc.titleEffect of the solvent on the extraction of polyphenols from distillery stillage and on their antioxidant activityen
dc.typeArticle
dc.page.number54-62
dc.contributor.authorAffiliationMikucka, Wioleta - University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Environmental Biotechnology, Sloneczna 45G, 10-709 Olsztyn, Polanden
dc.contributor.authorAffiliationZielińska, Magdalena - University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Environmental Biotechnology, Sloneczna 45G, 10-709 Olsztyn, Polanden
dc.identifier.eissn2083-8484
dc.referencesAraujo, M., Pimentela, F.B., Alvesa, R.C., Oliveiraa, M.B.P.P. 2015. Phenolic compounds from olive mill wastes: health effects, analytical approach and application as food antioxidants. Trends in Food Science & Technology, 45(2): 200–211.en
dc.referencesAzmir, J., Zaidul, I.S.M., Rahman, M.M., Sharif, K.M., Mohamed, A., Sahena, F., Omar, A.K.M. 2013. Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering, 117(4): 426–436.en
dc.referencesBelc, N., Mustatea, G., Apostol, L., Iorga, S., Vlăduţ, V.-N., Mosoiu, C. 2019. Cereal supply chain waste in the context of circular economy. E3S Web of Conferences, 112: 03031.en
dc.referencesCaruso, M.C., Braghieri, A., Capece, A., Napolitano, F., Romano, P., Galgano, F., Altieri, G., Genovese, F. 2019. Recent updates on the use of agro-food waste for biogas production. Applied Sciences, 9: 12–17.en
dc.referencesComan, V., Teleky, B.-E., Mitrea, L., Martău, G.A., Szabo, K., Călinoiu, L.-F., Vodnar, D.C. 2019. Bioactive potential of fruit and vegetable wastes. Advances in Food and Nutrition Research, 91: 157–225.en
dc.referencesDjukić-Vuković, A.P., Mojović, L.V., Semenčenko, V.V., Radosavljević, M.M., Pejin, J.D., Kocić-Tanackov, S.D. 2015. Effective valorisation of distillery stillage by integrated production of lactic acid and high quality feed. Food Research International, 73: 75–80.en
dc.referencesEmmons, C.L., Peterson, D.M. 1999. Antioxidant activity and phenolic contents of oat groats and hulls. Cereal Chemistry, 76(6): 902–906.en
dc.referencesFan, M., Zhang, S., Ye, G., Zhang, H., Xie, J. 2018. Integrating sugarcane molasses into sequential cellulosic biofuel production based on SSF process of high solid loading. Biotechnology for Biofuels, 11: 329.en
dc.referencesFito, J., Tefera, N., Kloo, H., van Hulle, S.W.H. 2019. Physicochemical properties of the sugar industry and ethanol distillery wastewater and their impact on the environment. Sugar Technology, 21: 265–277.en
dc.referencesGuzik, B., Appenzeller, D., Jurek, W. 2005. Forecasting and simulations, selected issues. Publishing House of the University of Economics in Poznań, Poznań (in Polish).en
dc.referencesKharayat, Y. 2012. Distillery wastewater: bioremediation approaches. Journal of Integrative Environmental Sciences, 9: 69–91.en
dc.referencesKrzywonos, M., Skudlarski, J., Kupczyk, A., Wojdalski, J., Tucki, K. 2015. Forecast for the development of the transport biofuels sector in Poland in 2020–2030. Chemical industry, 94: 2218–2222 (in Polish).en
dc.referencesLaufenberg, G., Kunz, B., Nystroem, M. 2003. Transformation of vegetable waste into value added products: (A) the upgrading concept; (B) practical implementations. Bioresource Technology, 87: 167–198.en
dc.referencesLibrán, C.M., Mayor, L., Garcia-Castello, E.M., Vidal-Brotons, D. 2013. Polyphenol extraction from grape wastes: solvent and pH effect. Journal of Agricultural Science, 4(9): 56–62.en
dc.referencesLin, C.S.K., Pfaltzgraff, L.A., Herrero-Davila, L., Mubofu, E.B., Abderrahim, S., Clark, J.H., Koutinas, A.A., Kopsahelis, N., Stamatelatou, K., Dickson, F., Thankappan, S., Mohamed, R., Brocklesbyc, R., Luque, R. 2013. Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy & Environmental Science, 6(2): 426.en
dc.referencesLourenço, S.C., Moldão-Martinsand, M., Alves, V.D. 2019. Antioxidants of natural plant origins: from sources to food industry applications. Molecules, 24(22): 4132.en
dc.referencesMelamane, X.L., Strong, P.J., Burgess, J.E. 2007. Treatment of wine distillery wastewater: a review with emphasis on anaerobic membranę reactor. South African Journal for Enology and Viticulture, 28: 25–36.en
dc.referencesMohana, S., Acharya, B.K., Madamwar, D. 2009. Distillery spent wash: treatment technologies and potential applications. Journal of Hazardous Materials, 163(1): 12–25.en
dc.referencesMoure, A., Cruz, J.M., Franco, D., Dominguez, J.M., Sineiro, J., Dominguez, H., Nuñez, M.J., Parajò, J.C. 2001. Natural antioxidant from residual sources. Food Chemistry, 72(2): 145–171.en
dc.referencesOkonko, I.O., Adeola, O.T., Aloysius, F.E., Damilola, A.O., Adewale, O.A. 2009. Utilization of food wastes for sustainable development. Electronic Journal on Environmental. Agriculture and Food Chemistry, 8(4): 2 63–286.en
dc.referencesPandey, K.B., Rizvi, S.I. 2009. Current understanding of dietary polyphenols and their role in health and disease. Current Nutrition and Food Science, 5(4): 249–263.en
dc.referencesPerez-Jimenez, J., Saura-Calixto, F. 2006. Effect of solvent and certain food constituents on different antioxidant capacity assays. Food Research International, 39: 791–800.en
dc.referencesPeterson, D.M., Emmons, C.L., Hibbs, A.H. 2001. Phenolic antioxidants and antioxidants activity in pearling fractions of oat groats. Journal of Cereal Science, 33(1): 97–103.en
dc.referencesPorter, W., Black, E.D., Drolet, A.M. 1989. Use of polyamide oxidative fluorescence test on lipid emulsions: contrast in relative effectiveness of antioxidants in bulk versus dispersed systems. Journal of the Science of Food and Agriculture, 37: 615–624.en
dc.referencesRosicka-Kaczmarek, J. 2004. Polyphenols as natural antioxidants in food. Bakery and Confectionery Review, 6: 12–16 (in Polish).en
dc.referencesRyznar-Luty, A., Cibis, E., Krzywonos, M. 2009. Methods of management of molasses decoction – economic practice and laboratory tests. Archives of Waste Management and Environmental Protection, 11: 19–32 (in Polish).en
dc.referencesSatyawali, Y., Balakrishnan, M. 2008. Wastewater treatment in molasses based alcohol distilleries for COD and color removal: a review. Journal of Environmental Economics and Management, 86(3): 481–497.en
dc.referencesShahidi, F., Naczk, M. 2011. Analysis of Polyphenols in Food. In: Ötleş S. (ed.), Methods of Analysis of Food Components and Additives, pp. 199–207. CRC Press, Boca Raton, FL.en
dc.referencesSingleton, V.L., Orthofer, R., Lamuela-Raventós, R.M. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299: 152–178.en
dc.referencesSmuga-Kogut, M. 2015. The importance of biofuel production in Poland on the example of bioethanol. Polish Journal of Chemical Technology, 17(3): 89–94 (in Polish).en
dc.referencesStegmann, P., Londo, M., Junginger, M. 2020. The Circular Bioeconomy: its elements and role in European bioeconomy clusters. Resources, Conservation & Recycling: X, 6: 100029.en
dc.referencesWilska-Jeszka, J. 2007. Polyphenols, glucosinolates and other health-promoting and anti-nutritional compounds. In: Sikorski Z.E. (ed.), Food Chemistry. Food Ingredients, pp. 203–219. Scientific and Technical Publishing House, Warszawa (in Polish).en
dc.contributor.authorEmailMikucka, Wioleta - wioleta.mikucka@uwm.edu.pl
dc.contributor.authorEmailZielińska, Magdalena - wioleta.mikucka@uwm.edu.pl
dc.identifier.doi10.18778/1730-2366.16.15
dc.relation.volume17


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0