Pokaż uproszczony rekord

dc.contributor.authorPaad, Akbar
dc.date.accessioned2021-11-05T10:31:57Z
dc.date.available2021-11-05T10:31:57Z
dc.date.issued2021-05-28
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/39685
dc.description.abstractIn this paper, the notions of tense operators and tense filters in \(BL\)-algebras are introduced and several characterizations of them are obtained. Also, the relation among tense \(BL\)-algebras, tense \(MV\)-algebras and tense Boolean algebras are investigated. Moreover, it is shown that the set of all tense filters of a \(BL\)-algebra is complete sublattice of \(F(L)\) of all filters of \(BL\)-algebra \(L\). Also, maximal tense filters and simple tense \(BL\)-algebras and the relation between them are studied. Finally, the notions of tense congruence relations in tense \(BL\)-algebras and strict tense \(BL\)-algebras are introduced and an one-to-one correspondence between tense filters and tense congruences relations induced by tense filters are provided.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;3en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subject(simple) tense BL-algebraen
dc.subjecttense operatorsen
dc.subjecttense filteren
dc.subjecttense congruenceen
dc.titleTense Operators on BL-algebras and Their Applicationsen
dc.typeOther
dc.page.number299-324
dc.contributor.authorAffiliationUniversity of Bojnord, Department of Mathematicsen
dc.identifier.eissn2449-836X
dc.references[1] M. Botur, I. Chajda, R. Halaš, M. Kolařík, Tense operators on basic algebras, International Journal of Theoretical Physics, vol. 50 (2011), pp. 3737–3749, DOI: https://doi.org/10.1007/s10773-011-0748-4en
dc.references[2] J. P. Burgess, Basic Tense Logic, [in:] D. M. Gabbay, F. Guenthner (eds.), Handbook of Philosophical Logic, Springer Netherlands, Dordrecht (2002), pp. 1–42, DOI: https://doi.org/10.1007/978-94-017-0462-5_1en
dc.references[3] I. Chajda, Algebraic axiomatization of tense intuitionistic logic, Open Mathematics, vol. 9(5) (2011), pp. 1185–1191, URL: http://eudml.org/doc/269762en
dc.references[4] I. Chajda, M. Kolařík, Dynamic effect algebras, Mathematica Slovaca, vol. 62(3) (2012), pp. 379–388, DOI: https://doi.org/10.2478/s12175-012-0015-zen
dc.references[5] D. Diaconescu, G. Georgescu, Tense Operators on MV-Algebras and Łukasiewicz-Moisil Algebras, Fundamenta Informaticae, vol. 81(4) (2007), pp. 379–408.en
dc.references[6] A. V. Figallo, G. Gallardo, G. Pelaitay, Tense operators on m-symmetric algebras, International Mathematical Forum, vol. 41 (2011), pp. 2007–2014.en
dc.references[7] A. V. Figallo, G. Pelaitay, Tense operators on SHn-algebras, Pioneer Journal Algebra Number Theory and its Applications, vol. 1 (2011), pp. 33–41.en
dc.references[8] P. Hájek, Metamathematics of fuzzy logic, Springer Netherlands, Dordrecht (1988), DOI: https://doi.org/10.1007/978-94-011-5300-3en
dc.references[9] T. Kowalski, Varieties of tense algebras, Reports on Mathematical Logic, vol. 32 (1998), pp. 53–95.en
dc.references[10] C. Lele, J. B. Nganou, MV-algebras derived from ideals in BL-algebras, Fuzzy Sets and Systems, vol. 218 (2013), pp. 103–113, DOI: https://doi.org/10.1016/j.fss.2012.09.014en
dc.references[11] A. D. Nola, G. Georgescu, A. Iorgulescu, Pseudo BL-algebras: Part I, Multiple-Valued Logic, vol. 8(5–6) (2000), pp. 673–714.en
dc.references[12] A. D. Nola, L. Leuştean, Compact representations of BL-algebras, Archive for Mathematical Logic, vol. 42 (2003), pp. 737–761, DOI: https://doi.org/10.1007/s00153-003-0178-yen
dc.contributor.authorEmailakbar.paad@gmail.com
dc.identifier.doi10.18778/0138-0680.2021.11
dc.relation.volume50


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0