dc.contributor.author | Paad, Akbar | |
dc.date.accessioned | 2021-11-05T10:31:57Z | |
dc.date.available | 2021-11-05T10:31:57Z | |
dc.date.issued | 2021-05-28 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/39685 | |
dc.description.abstract | In this paper, the notions of tense operators and tense filters in \(BL\)-algebras are introduced and several characterizations of them are obtained. Also, the relation among tense \(BL\)-algebras, tense \(MV\)-algebras and tense Boolean algebras are investigated. Moreover, it is shown that the set of all tense filters of a \(BL\)-algebra is complete sublattice of \(F(L)\) of all filters of \(BL\)-algebra \(L\). Also, maximal tense filters and simple tense \(BL\)-algebras and the relation between them are studied. Finally, the notions of tense congruence relations in tense \(BL\)-algebras and strict tense \(BL\)-algebras are introduced and an one-to-one correspondence between tense filters and tense congruences relations induced by tense filters are provided. | en |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Bulletin of the Section of Logic;3 | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | (simple) tense BL-algebra | en |
dc.subject | tense operators | en |
dc.subject | tense filter | en |
dc.subject | tense congruence | en |
dc.title | Tense Operators on BL-algebras and Their Applications | en |
dc.type | Other | |
dc.page.number | 299-324 | |
dc.contributor.authorAffiliation | University of Bojnord, Department of Mathematics | en |
dc.identifier.eissn | 2449-836X | |
dc.references | [1] M. Botur, I. Chajda, R. Halaš, M. Kolařík, Tense operators on basic algebras, International Journal of Theoretical Physics, vol. 50 (2011), pp. 3737–3749, DOI: https://doi.org/10.1007/s10773-011-0748-4 | en |
dc.references | [2] J. P. Burgess, Basic Tense Logic, [in:] D. M. Gabbay, F. Guenthner (eds.), Handbook of Philosophical Logic, Springer Netherlands, Dordrecht (2002), pp. 1–42, DOI: https://doi.org/10.1007/978-94-017-0462-5_1 | en |
dc.references | [3] I. Chajda, Algebraic axiomatization of tense intuitionistic logic, Open Mathematics, vol. 9(5) (2011), pp. 1185–1191, URL: http://eudml.org/doc/269762 | en |
dc.references | [4] I. Chajda, M. Kolařík, Dynamic effect algebras, Mathematica Slovaca, vol. 62(3) (2012), pp. 379–388, DOI: https://doi.org/10.2478/s12175-012-0015-z | en |
dc.references | [5] D. Diaconescu, G. Georgescu, Tense Operators on MV-Algebras and Łukasiewicz-Moisil Algebras, Fundamenta Informaticae, vol. 81(4) (2007), pp. 379–408. | en |
dc.references | [6] A. V. Figallo, G. Gallardo, G. Pelaitay, Tense operators on m-symmetric algebras, International Mathematical Forum, vol. 41 (2011), pp. 2007–2014. | en |
dc.references | [7] A. V. Figallo, G. Pelaitay, Tense operators on SHn-algebras, Pioneer Journal Algebra Number Theory and its Applications, vol. 1 (2011), pp. 33–41. | en |
dc.references | [8] P. Hájek, Metamathematics of fuzzy logic, Springer Netherlands, Dordrecht (1988), DOI: https://doi.org/10.1007/978-94-011-5300-3 | en |
dc.references | [9] T. Kowalski, Varieties of tense algebras, Reports on Mathematical Logic, vol. 32 (1998), pp. 53–95. | en |
dc.references | [10] C. Lele, J. B. Nganou, MV-algebras derived from ideals in BL-algebras, Fuzzy Sets and Systems, vol. 218 (2013), pp. 103–113, DOI: https://doi.org/10.1016/j.fss.2012.09.014 | en |
dc.references | [11] A. D. Nola, G. Georgescu, A. Iorgulescu, Pseudo BL-algebras: Part I, Multiple-Valued Logic, vol. 8(5–6) (2000), pp. 673–714. | en |
dc.references | [12] A. D. Nola, L. Leuştean, Compact representations of BL-algebras, Archive for Mathematical Logic, vol. 42 (2003), pp. 737–761, DOI: https://doi.org/10.1007/s00153-003-0178-y | en |
dc.contributor.authorEmail | akbar.paad@gmail.com | |
dc.identifier.doi | 10.18778/0138-0680.2021.11 | |
dc.relation.volume | 50 | |