dc.contributor.author | Michalska, Maria | |
dc.contributor.editor | Krasiński, Tadeusz | |
dc.contributor.editor | Spodzieja, Stanisław | |
dc.date.accessioned | 2022-12-22T15:42:36Z | |
dc.date.available | 2022-12-22T15:42:36Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Michalska M., Real Nullstellensatz and sums of squares, [in:] Analitic and Algebraic Geometry 4, T. Krasiński, S. Spodzieja (ed.), WUŁ, Łódź 2022, https://doi.org/10.18778/8331-092-3.10 | pl_PL |
dc.identifier.isbn | 978-83-8331-092-3 | |
dc.identifier.uri | http://hdl.handle.net/11089/44817 | |
dc.description.abstract | In this paper we highlight the foundational principles of sums of squares in the study of Real Algebraic Geometry. To this aim the article is designed as mainly a self-contained presentation of a variation of the standard proof of Real Nullstellensatz, the only relevant omission being the (long) proof of the Tarski-Seidenberg theorem. On the way we see how the theory follows closely developments in algebra and model theory due to Artin and Schreier. This allows us to present on the way Artin’s solution to Hilbert’s 17th Problem: whether positive polynomials are sums of squares. These notes are intended to be accessible to math students of any level. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl_PL |
dc.relation.ispartof | Analitic and Algebraic Geometry 4; | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Nullstellensatz | pl_PL |
dc.subject | Artin-Schreier | pl_PL |
dc.subject | Hilbert’s 17th Problem | pl_PL |
dc.subject | sums of squares | pl_PL |
dc.title | Real Nullstellensatz and sums of squares | pl_PL |
dc.type | Book chapter | pl_PL |
dc.page.number | 121-136 | pl_PL |
dc.contributor.authorAffiliation | Uniwersytet Łódzki, Wydział Matematyki i Informatyki | pl_PL |
dc.identifier.eisbn | 978-83-8331-093-0 | |
dc.references | Artin, E. Über die Zerlegung definiter Funktionen in Quadrate. Abh. Math. Sem. Univ. Hamburg, 5 (1927), no. 1, 100–115. | pl_PL |
dc.references | J. Bochnak, M. Coste, M.-F. Roy, Real algebraic geometry, volume 36 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin. 1998. Translated from the 1987 French original, Revised by the authors. | pl_PL |
dc.references | C. N. Delzell, A continuous, constructive solution to Hilbert’s 17th problem. Invent. Math. 76 (1984), no. 3, 365–384. | pl_PL |
dc.references | P. C. Eklof, Lefschetz’s principle and local functors. Proc. Amer. Math. Soc. 37 (1973). 333–339. | pl_PL |
dc.references | G. Fichou, J. Huisman, F. Mangolte, J.-P. Monnier, Fonctions régulues. J. Reine Angew. Math. 718 (2016), 103–151. | pl_PL |
dc.references | I. M. Isaacs, Roots of polynomials in algebraic extensions of fields. Amer. Math. Monthly 87 (1980), no. 7, 543–544. | pl_PL |
dc.references | J. B. Lasserre, An introduction to polynomial and semi-algebraic optimization. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge 2015. | pl_PL |
dc.references | I. G. Macdonald, Symmetric functions and Hall polynomials. The Clarendon Press, Oxford University Press, New York. Oxford Mathematical Monographs 1979. | pl_PL |
dc.references | M. Marshall, Positive polynomials and sums of squares, volume 146 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI. 2008. | pl_PL |
dc.references | J.-J. Risler, Une caractérisation des idéaux des variétés algébriques réelles. C. R. Acad. Sci. Paris Sér. A-B, 271 (1970), A1171–A1173. | pl_PL |
dc.references | A. Robinson, Introduction to model theory and to the metamathematics of algebra. North-Holland Publishing Co., Amsterdam 1963. | pl_PL |
dc.references | C. Scheiderer, Positivity and sums of squares: a guide to recent results. In Emerging applications of algebraic geometry, volume 149 of IMA Vol. Math. Appl., pages 271–324. Springer, New York 2009. | pl_PL |
dc.references | A. Seidenberg, Comments on Lefschetz’s principle. Amer. Math. Monthly, 65 (1958), 685–690. | pl_PL |
dc.references | A. Tarski, A decision method for elementary algebra and geometry. University of California Press, Berkeley and Los Angeles, Calif. 2nd ed. 1951. | pl_PL |
dc.contributor.authorEmail | maria.michalska@wmii.uni.lodz.pl | pl_PL |
dc.identifier.doi | 10.18778/8331-092-3.10 | |