Show simple item record

dc.contributor.authorMichalska, Maria
dc.contributor.editorKrasiński, Tadeusz
dc.contributor.editorSpodzieja, Stanisław
dc.date.accessioned2022-12-22T15:42:36Z
dc.date.available2022-12-22T15:42:36Z
dc.date.issued2022
dc.identifier.citationMichalska M., Real Nullstellensatz and sums of squares, [in:] Analitic and Algebraic Geometry 4, T. Krasiński, S. Spodzieja (ed.), WUŁ, Łódź 2022, https://doi.org/10.18778/8331-092-3.10pl_PL
dc.identifier.isbn978-83-8331-092-3
dc.identifier.urihttp://hdl.handle.net/11089/44817
dc.description.abstractIn this paper we highlight the foundational principles of sums of squares in the study of Real Algebraic Geometry. To this aim the article is designed as mainly a self-contained presentation of a variation of the standard proof of Real Nullstellensatz, the only relevant omission being the (long) proof of the Tarski-Seidenberg theorem. On the way we see how the theory follows closely developments in algebra and model theory due to Artin and Schreier. This allows us to present on the way Artin’s solution to Hilbert’s 17th Problem: whether positive polynomials are sums of squares. These notes are intended to be accessible to math students of any level.pl_PL
dc.language.isoenpl_PL
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl_PL
dc.relation.ispartofAnalitic and Algebraic Geometry 4;
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectNullstellensatzpl_PL
dc.subjectArtin-Schreierpl_PL
dc.subjectHilbert’s 17th Problempl_PL
dc.subjectsums of squarespl_PL
dc.titleReal Nullstellensatz and sums of squarespl_PL
dc.typeBook chapterpl_PL
dc.page.number121-136pl_PL
dc.contributor.authorAffiliationUniwersytet Łódzki, Wydział Matematyki i Informatykipl_PL
dc.identifier.eisbn978-83-8331-093-0
dc.referencesArtin, E. Über die Zerlegung definiter Funktionen in Quadrate. Abh. Math. Sem. Univ. Hamburg, 5 (1927), no. 1, 100–115.pl_PL
dc.referencesJ. Bochnak, M. Coste, M.-F. Roy, Real algebraic geometry, volume 36 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin. 1998. Translated from the 1987 French original, Revised by the authors.pl_PL
dc.referencesC. N. Delzell, A continuous, constructive solution to Hilbert’s 17th problem. Invent. Math. 76 (1984), no. 3, 365–384.pl_PL
dc.referencesP. C. Eklof, Lefschetz’s principle and local functors. Proc. Amer. Math. Soc. 37 (1973). 333–339.pl_PL
dc.referencesG. Fichou, J. Huisman, F. Mangolte, J.-P. Monnier, Fonctions régulues. J. Reine Angew. Math. 718 (2016), 103–151.pl_PL
dc.referencesI. M. Isaacs, Roots of polynomials in algebraic extensions of fields. Amer. Math. Monthly 87 (1980), no. 7, 543–544.pl_PL
dc.referencesJ. B. Lasserre, An introduction to polynomial and semi-algebraic optimization. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge 2015.pl_PL
dc.referencesI. G. Macdonald, Symmetric functions and Hall polynomials. The Clarendon Press, Oxford University Press, New York. Oxford Mathematical Monographs 1979.pl_PL
dc.referencesM. Marshall, Positive polynomials and sums of squares, volume 146 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI. 2008.pl_PL
dc.referencesJ.-J. Risler, Une caractérisation des idéaux des variétés algébriques réelles. C. R. Acad. Sci. Paris Sér. A-B, 271 (1970), A1171–A1173.pl_PL
dc.referencesA. Robinson, Introduction to model theory and to the metamathematics of algebra. North-Holland Publishing Co., Amsterdam 1963.pl_PL
dc.referencesC. Scheiderer, Positivity and sums of squares: a guide to recent results. In Emerging applications of algebraic geometry, volume 149 of IMA Vol. Math. Appl., pages 271–324. Springer, New York 2009.pl_PL
dc.referencesA. Seidenberg, Comments on Lefschetz’s principle. Amer. Math. Monthly, 65 (1958), 685–690.pl_PL
dc.referencesA. Tarski, A decision method for elementary algebra and geometry. University of California Press, Berkeley and Los Angeles, Calif. 2nd ed. 1951.pl_PL
dc.contributor.authorEmailmaria.michalska@wmii.uni.lodz.plpl_PL
dc.identifier.doi10.18778/8331-092-3.10


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe