Show simple item record

dc.contributor.authorRossa, Agnieszka
dc.contributor.authorSzymański, Andrzej
dc.contributor.authorSocha, Lesław
dc.date.accessioned2023-01-11T07:16:10Z
dc.date.available2023-01-11T07:16:10Z
dc.date.issued2018
dc.identifier.citationRossa A., Szymański A., Socha L., Hybrid Dynamic and Fuzzy Models of Morality, „Gerontologia”, Wydawnictwo Uniwersytetu Łódzkiego, Łódź 2018, https://doi.org/10.18778/8088-926-2pl_PL
dc.identifier.isbn978-83-8088-926-2
dc.identifier.urihttp://hdl.handle.net/11089/45256
dc.descriptionMortality is generally considered relatively easy to forecast, particularly when the forecasting horizon is short. In longer periods however, its course may be affected by various changes brought about by all kinds of disturbances and events, A case in point is the health crisis in Poland of the 1970s and 1980s [Okólski 2003], In such cases, it is of key importance that appropriate assumptions and an adequate model are selected. Mortality forecasting is usually supported by extrapolative models, making use of the regularity found in age patterns and trends of death rates or probabilities over time. There are several reasons why one should learn more about mortality models. Forecasting of mortality has a wide range of applications outside the field of statistics and mathematics. It is of fundamental importance in such areas as funding of public or private pensions and life insurance. Annuity providers and policy makers use mortality projections to determine appropriate pension benefits, to assess retirement income or life insurance products, to hold additional reserving capital or to manage the long term demographic risk. Thus, one of the important question arises: What is the best way to forecast future mortality rates and to model the uncertainty of such forecasts? A key input to address this question is the development of advanced mortality modeling methodology. These notes are an attempt to capture the stochastic nature of mortality by approaching the subject of mortality modeling and forecasting from a new theoretical point of view, using theory of stochastic differential equations, theory of fuzzy numbers and complex numbers. The book is addressed to tertiary students, doctoral students and specialists in the fields of demography, life insurance, statistics and economics. This research project was funded by the National Science Center pursuant to its decision no. 2015/17/B/HS4/00927.pl_PL
dc.description.sponsorshipThe research was supported by a grant from the National Science Centre, Poland, under contract UMO-2015/17/B/HS4/00927pl_PL
dc.language.isoenpl_PL
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl_PL
dc.relation.ispartofseries„Gerontologia”;
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectmortality modelspl_PL
dc.subjecthybrid modelspl_PL
dc.subjectstatic and dynamic hybrid modelspl_PL
dc.subjectfuzzy models of mortalitypl_PL
dc.titleHybrid Dynamic and Fuzzy Models of Moralitypl_PL
dc.typeBookpl_PL
dc.rights.holder© Copyright by Authors, Łódź 2018; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2018pl_PL
dc.page.number302pl_PL
dc.contributor.authorAffiliationUniversity of Łódź, Faculty of Economics and Sociology, Department of Demography and Social Gerontology, 90-214 Łódź, 41/43 Rewolucji 1905 r. St.pl_PL
dc.contributor.authorAffiliationUniversity of Łódź, Faculty of Economics and Sociology, Department of Demography and Social Gerontology, 90-214 Łódź, 41/43 Rewolucji 1905 r. St.pl_PL
dc.contributor.authorAffiliationCardinal Stefan Wyszyński University in Warsaw, Faculty of Mathematics and Natural Sciences. School of Exact Sciences, Institute of Informatics, 01-938 Warszawa, 1/3 Wóycickiego St.pl_PL
dc.identifier.eisbn978-83-8088-927-9
dc.referencesAalen O. O., (1978), Nonparametric Inference for a Family of Counting Processes, Annals of Statistics, 6, 701-726.pl_PL
dc.referencesAkushevich I., Akushevich L., Manton K., Yashin A., (2003), Stochastic process model of mortality and aging: Application to longitudinal data, Nonlinear Phenomena in Complex Systems, 6, 515-523.pl_PL
dc.referencesAlexiewicz A., (1969), Analiza funkcjonalna, PWN, Warszawa.pl_PL
dc.referencesAlho J. M., Spencer B. D., (2005), Statistical Demography and Forecasting, Springer.pl_PL
dc.referencesAntoch J., Huškova M., Janic A., Ledwina T., (2008), Data driven rank test for the change point problem, Metrika, Vol. 68 (1), 1-15.pl_PL
dc.referencesArnold B. C., (1983), Pareto Distributions, International Cooperative Publishing House, Fairland, Maryland.pl_PL
dc.referencesArnold B. C., Press S. J., (1989), Bayesian Estimation and Prediction for Pareto Data, Journal of the American Statistical Association, 84, 1079-1084.pl_PL
dc.referencesBain L. J., (1974), Analysis for the Linear Failure-Rate Life-Testing Distribution, Technometrics, 4, 551-559.pl_PL
dc.referencesBalicki A., (2006), Analiza przeżycia i tablice wymieralności, PWE, Warszawa.pl_PL
dc.referencesBargiela A., Pedrycz W., Nakashima T., (2007), Multiple regression with fuzzy data, Fuzzy Sets and Systems, 158, 2169-2188.pl_PL
dc.referencesBayraktar E., Milevsky M. A., Promislow S. D., Young V. R., (2009),Valuation of mortality risk via the instantaneous Sharpe ratio: Applications to life annuities, Journal of Economics Dynamics and Control, 33, 676-691.pl_PL
dc.referencesBenjamin B., Pollard J., (1993), The analysis of mortality and other actuarial statistics, The Institute of Actuaries, Oxford.pl_PL
dc.referencesBennett S., (1983), Log-Logistic Regression models for Survival Data, Applied Statistics, 32, 165-171.pl_PL
dc.referencesBiffis E., (2005), Affine processes for dynamic mortality and actuarial valuations, Insurance: Mathematics and Economics, 37, 443-468.pl_PL
dc.referencesBiffis E., Denuit M., (2006), Lee-Carter goes risk-neutral. An application to the Italian annuity market, Giornalle dell'Instituton Italiano degli Attuari, LXIX, 1-21.pl_PL
dc.referencesBiffs E., Denuit M., Devolder P., (2010), Stochastic mortality under measure changes, Scandinavian Actuarial Journal, 4, 284-311.pl_PL
dc.referencesBlom H.A.P., Lygeros J., (eds.) (2006), Stochastic Hybrid Systems. Theory and Safety Critical Applications, Springer, Berlin.pl_PL
dc.referencesBooth H., (2006), Demographic forecasting: 1980 to 2005 in review, International Journal of Forecasting, 22, 547-581.pl_PL
dc.referencesBoukas E. K., (2005), Stochastic Hybrid Systems: Analysis and Design, Birkhauser, Boston.pl_PL
dc.referencesBravo J. M., (2009), Modelling mortality using multiple stochastic latent factors, Proceedings of 7th International Workshop on Pension, Insurance and Saving, Paris, May 28-29, 1-15.pl_PL
dc.referencesBravo J. M., Braumann C. A., (2007), The value of a random life: modelling survival probabilities in a stochastic environment, Bulletin of the International Statistical Institute, LXII.pl_PL
dc.referencesBrazauskas V., Serfing R., (2000), Robust and Effcient Estimation of the Tail Index of a Single Parameter Pareto Distribution, North American Actuarial Journal, 4, 12-27.pl_PL
dc.referencesBrazauskas V., Serffing R., (2001), Small Sample Performance of Robust Estimators of Tail Parameters For Pareto and Exponential models, Journal of Statistical Computation and Simulation, 70, 1-19.pl_PL
dc.referencesBrouhns N., Denuit M., Vermunt J. K., (2002), A Poisson log-bilinear regression approach to the construction of projected lifetables, Insurance: Mathematics and Economics, 31, 373-393.pl_PL
dc.referencesCairns A. J. G., Blake D., Dowd K., (2006), A Two-Factor for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration, The Journal of Risk and Insurance, Vol. 73(4), 687-718.pl_PL
dc.referencesCairns A. J. G., Blake D., Dowd K., (2008), Modelling and management of mortality risk: a review, Scandinavian Actuarial Journal, 2-3, 79-113.pl_PL
dc.referencesCairns A. J. G., Blake D., Dowd K., Coughlan G. D., Epstein D., (2011), Mortality density forecasts: An analysis of six stochastic mortality models, Insurance: Mathematics and Economics, 48, 355-367.pl_PL
dc.referencesCairns A. J. G., Blake D., Dowd K., Coughlan G., Epstein D., Khallaf-Allah M., (2008), The plausibility of mortality density forecasts: an analysis of six stochastic mortality models, Pensions Institute, Discussion Paper PI-0801.pl_PL
dc.referencesCairns A. J. G., Blake D., Dowd K., Coughlan G. D., Epstein D., Ong A., Balevich I., (2009), A quantitative comparison of stochastic mortality models using data from England and Wales and the United States, North American Actuarial Journal, 13, 1-35.pl_PL
dc.referencesChen Z., (2000), A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function, Statistics & Probability Letters, 49(2), 155-161.pl_PL
dc.referencesChiang C. L., (1968), Introduction to Stochastic Processes in Biostatistics, John Wiley, New York.pl_PL
dc.referencesCoelho E., Magalhaes M. G., Bravo J. M., (2010), Mortality projections in Portugal, Proceeding of the Conference of European Statisticians, Working Session on Demographic Projections, Lisbon, Portugal, EUROSTAT (Series Forecasting demographic components: mortality, April 28-30, 1-11.pl_PL
dc.referencesCox D. R., (1972), Regression models and Life-Tables, Journal of the Royal Statistical Society, Ser. B, 34, 187-220.pl_PL
dc.referencesCox D. R., (1975), Partial Likelihood, Biometrika, 62, 269-276.pl_PL
dc.referencesCox J. C., Ingersoll J. E., Ross S. A., (1985a), A theory of the term structure of interest rates, Econometrica, 53, 385-407.pl_PL
dc.referencesCox J. C., Ingersoll J. E., Ross S. A., (1985b), An intertemporal general equilibrium model of asset prices, Econometrica, 53, 363-384.pl_PL
dc.referencesCurrie I. D., (2006), Smoothing and forecasting mortality rates with p-splines, Talk given at the Institute of Actuaries in 2006, available from http://www.ma.hw.ac.uk/iain/research/talks.htmlpl_PL
dc.referencesDahl M., (2004), Stochastic mortality in life insurance: market reserves and mortality-linked insurance contracts, Insurance: Mathematics and Eco-nomics, 35, 113-136.pl_PL
dc.referencesDe Moivre A., Annuities upon Lives, Printed by W. P. and fold by Francis Fayram, London.pl_PL
dc.referencesDebon A., Montes F., Puig F., (2008), Modelling and forecasting mortality in Spain, European Journal of Operational Research, 189, 624-637.pl_PL
dc.referencesDenuit M., (2007), Life Annuities with Stochastic Survival Probabilities: A Review, Working Paper. Institut de Statistique & Institut des Sciences Actuarielles Universite Catholique de Louvain, Belgium.pl_PL
dc.referencesDiamond P., (1988), Fuzzy least-squares, Information Sciences, 46(3), 141-157.pl_PL
dc.referencesDiCiccio T., (1987), Approximate Inference for the Generalized Gamma Distribution, Technometrics, 29, 33-40.pl_PL
dc.referencesDubois D., Prade H., (1980), Fuzzy Sets and Systems: Theory and Applications, Academic Press, New York, London, Toronto, Sydney, San Francisco.pl_PL
dc.referencesEvlanov L., Konstantinov V., (1976), System with Random Parameters, Nauka, Moskwa (In Russian).pl_PL
dc.referencesFeigl P., Zelen M., (1965), Estimation of the Exponential Survival Probabilities with Concomitant Information, Biometrics, 21, 826-838.pl_PL
dc.referencesFrątczak E., (1997), Analiza historii zdarzeń – elementy teorii, wybrane przykłady zastosowań z wykorzystaniem pakietu TDA, Szkoła Główna Handlowa, Warszawa.pl_PL
dc.referencesFung M. C., Peters G. W., Shevchenko P. V., (2015),A State-Space Estimation of the Lee-Carter Mortality Model and Implications for Annuity Pricing, Annals of Actuarial Science, vol. 11(2), 343-389.pl_PL
dc.referencesGiacometti R., Ortobelli S., Bertocchi M., (2011), A stochastic model for mortality rate on Italian Data, Journal of Optimization Theory and Applications, 149, 216-228.pl_PL
dc.referencesGirosi F., King G., (2006), Demographic Forecasting, Cambridge University Press, Cambridge.pl_PL
dc.referencesGlasser M., (1967), Exponential Survival with Covariance, Journal of the American Statistical Association, 62, 501-568.pl_PL
dc.referencesGompertz B., (1825), On the nature of the function expressive of the law of human mortality and on a new mode of determining life contingencies, Philosophical Transactions of the Royal Society of London, Ser. A, CXV, 513-583.pl_PL
dc.referencesGupta R. C., Kannan N., Raychaudhuri A., (1997), Analysis of lognormal survival data, Mathematical Biosciences, 139(2), 103-115.pl_PL
dc.referencesGraunt J. (1662), Natural and political observations mentioned in a following index, and made upon the bills of mortality, see London: John Martyn and James Allestry, 1973.pl_PL
dc.referencesHaberman S., Renshaw A., (2008), Mortality, longevity and experiments with the LeeCarter model, Lifetime Data Analysis, 14, 286-315.pl_PL
dc.referencesHaberman S., Renshaw A., (2009), On age-period-cohort parametric mortality rate projections, Insurance: Mathematics and Economics, 45, 255-270.pl_PL
dc.referencesHaberman S., Renshaw A., (2011), A comparative study of parametric mortality projection models, Insurance: Mathematics and Economics, 48, 3-55.pl_PL
dc.referencesHainaut D., (2012), Multi dimensions LeeCarter model with switching mortality processes, Insurance: Mathematics and Economics, 47, 409-418.pl_PL
dc.referencesHainaut D., Devolder P., (2007), Management of a pension fund under mortality and financial risks, Insurance: Mathematics and economics, 41(1), 134-155.pl_PL
dc.referencesHainaut D., Devolder P., (2008), Mortality modelling with Levy processes, Insurance: Mathematics and Economics, 42, 409-418.pl_PL
dc.referencesHalley E., (1693), An estimate of the degrees of the mortality of mankind, drawn from curious tables of the births and funerals at the city of Breslaw with an attempt to ascertain the price of annuities upon lives, Phil. Trans. Roy. Soc. London, 17, 596-610.pl_PL
dc.referencesHansen L. P. (1982), Large sample properties of Generalized Method of Moments Estimators, Econometrica, 50, 1029-1054.pl_PL
dc.referencesHarper F. S., (1936), An actuarial study of infant mortality, Scandinavian Actuarial Journal, vol. 3-4, 234-270.pl_PL
dc.referencesHarter H. L., (1967), Maximum Likelihood Estimation of the Parameters of a Four-Parameter Generalized Gamma Population from Complete and Censored Samples, Technometrics, 9, 159-165.pl_PL
dc.referencesHatzopoulos P., Haberman S., (2011), A dynamic parametrization modeling for the age-period-cohort mortality, Insurance: Mathematics and Eco-nomics, 49, 155-174.pl_PL
dc.referencesHeligman L., Pollard J. H., (1980), The age pattern of mortality, Journal of the Institute of Actuaries, 107, 49-80.pl_PL
dc.referencesHespanha J.P., Tiwari A., (2006), Hybrid Systems: Computations and Control, Springer, Berlin.pl_PL
dc.referencesHjorth U., (1980), A Reliability Distribution with Increasing, Decreasing, Constant and Bathtub-Shaped Failure Rates, Technometrics, 22, 99-107.pl_PL
dc.referencesHong H. D., (2001), Shape preserving multiplications of fuzzy numbers, Fuzzy Sets and Systems, 123, 81-84.pl_PL
dc.referencesHong H. D., Song J. K., Do H. Y., (2001), Fuzzy least-squares regression analysis using shape preserving operations, Information Sciences, 138, 185-193.pl_PL
dc.referencesHuffer F. W., McKeague I. W., (1991), Weighted Least Squares Estimation for Aalen's Additive Risk Model, Journal of the American Statistical Association, 86, 114-129.pl_PL
dc.referencesIbrahim R., (1985), Parametric Random Vibration, Research Studies Press, Letchworth, United Kingdom.pl_PL
dc.referencesItkis Y., (1983), Dynamic switching of type I/ type II structures in tracking servosystems, IEEE Transactions on Automatic Control, 28, 531-534.pl_PL
dc.referencesJanic-Wróblewska A., Ledwina T., (2000), Data driven rank test for two-sample problem, Scandinavian Journal of Statistics, 27, 281-297.pl_PL
dc.referencesJanssen J., Skiadas C. H., (1995), Dynamic modelling of life table data, Applied Stochastic models and Data Analysis, 11, 35-49.pl_PL
dc.referencesKannisto V., (1994), Development of oldest-old mortality, 1950-1990: evidence from 28 developed countries, Odense University Press, Odense, Denmark.pl_PL
dc.referencesKaplan E. L., Meier P., (1958), Nonparametric Estimation from Incomplete Observations, Journal of the American Statistical Association, 53, 457-481.pl_PL
dc.referencesKazakov I. E., Artemiev B. M., (1980), Optimization of Dynamic Systems with Random Structure, Nauka, Moscow (w j. rosyjskim).pl_PL
dc.referencesKeilman N., (1990), Uncertainty in population forecasting: issues, backgrounds, analyses, recommendations, Swets & Zeitlinger, Amsterdam.pl_PL
dc.referencesKeilman N. (ed.), (2005), Perspectives on Mortality Forecasting. Probabilistic models, Försäkringskassan, Swedish Social Insurance Agency.pl_PL
dc.referencesKȩdelski M., Paradysz J., (2006), Demografia, Wyd. AE, Poznań.pl_PL
dc.referencesKodlin D., (1967), A New Response Time Distribution, Biometrics, 2, 227-239.pl_PL
dc.referencesKoissi M. C., Shapiro A. F., (2006), Fuzzy formulation of the Lee-Carter model for mortality forecasting, Insurance: Mathematics and Economics, 39, 287-309.pl_PL
dc.referencesKołodziej W., (1970), Wybrane rozdziały analizy matematycznej, Biblioteka Matematyczna, t. 36, PWN, Warszawa.pl_PL
dc.referencesKosiński W., Prokopowicz P., (2004), Algebra liczb rozmytych, Matematyka Stosowana, 46, 37-63.pl_PL
dc.referencesKosiński W., Prokopowicz P., Ślęzak D., (2003), Ordered fuzzy numbers, Bulletin of the Polish Academy of Sciences – Mathematics, 51, 327-338.pl_PL
dc.referencesKrane S. A., (1963), Analysis of Survival Data by Regression Techniques, Technometrics, 5, 161-174.pl_PL
dc.referencesLadde G. S., Wu L., (2009), Development of modifed Geometric Brownian Motion model by using stock price data and basic statistics, Nonlinear Analysis, 71, 1203-1208.pl_PL
dc.referencesLambert J. H., (1776), Dottrina degli azzardi, Gaeta and Fontana, Milan.pl_PL
dc.referencesLee R. D., Carter L., (1992), Modeling and forecasting the time series of U.S. mortality, Journal of the American Statistical Association, 87, 659-671.pl_PL
dc.referencesLee R. D., Miller T., (2001), Evaluating the performance of the Lee-Carter method for forecasting mortality, Demography, 38, 537-549.pl_PL
dc.referencesLiberzon D., (2003), Switchings in Systems and Control, Birkhauser, Boston, Basel, Berlin.pl_PL
dc.referencesLin D. Y., (1991), Goodness-of-Fit Analysis for the Cox Regression Model Based on a Class of Parameter Estimators, Journal of the American Statistical Association, 86, 725-728.pl_PL
dc.referencesLin H., Antsaklis P. J., (2009), Stability and stabilizability of switched linear systems: a survey of recent results, IEEE Transactions on Automatic Control, 54, 308-322.pl_PL
dc.referencesLipcer R., Sziriajew A., (1981), Statystyka procesów stochastycznych, PWN, Warszawa.pl_PL
dc.referencesLoparo K. A., Aslanis J. T., Hajek O., (1987), Analysis of switching linear systems in the plane, part 1: local behavior of trajectories and local cycle geometry, Journal of Optimization Theory and Applications, 52, 365-394.pl_PL
dc.referencesLuciano E., Spreeuw J., Vigna E., (2008), Modelling stochastic mortality for dependents lives, Insurance: Mathematics and Economics, 43, 234-244.pl_PL
dc.referencesLuciano E., Vigna E., (2008), Mortality risk via affine stochastic intensities: calibration and empirical relevance, Belgian Actuarial Biulletin, vol. 8(1), 5-16.pl_PL
dc.referencesMakeham W. M., (1867), On the Law of Mortality and the Construction of Annuity Tables, J. Inst. Actuaries and Assur. Mag., 8, 301-310.pl_PL
dc.referencesMalik H. J., (1970), Estimation of the Parameters of the Pareto Distribution, Metrika, 15, 126-132.pl_PL
dc.referencesMao X., Yuan C., (2006), Stochastic Differential Equations with Markovian Switching, Imperial College Press. London.pl_PL
dc.referencesMilevsky M. A., Promislow S. D., (2001), Mortality derivatives and the option annuities, Insurance: Mathematics and Economics, 29, 299-318.pl_PL
dc.referencesMlak W., (1970), Wstęp do teorii przestrzeni Hilberta, PWN, Warszawa.pl_PL
dc.referencesNelson W., (1969), Hazard Plotting for Incomplete Failure Data, Journal of Quality Technology, 1, 27-52.pl_PL
dc.referencesNielsen B., Nielsen J. P., (2010), Identification and Forecasting in the Lee-Carter Model, Economics Series Working Papers No 2010-W07, University of Oxford, Department of Economics, available on-line: www.nuffield.ox.ac.ukpl_PL
dc.referencesOkólski M. (ed.), (1990), Determinanty umieralności w świetle teorii i badań empirycznych, Wyd. SGPiS, Warszawa.pl_PL
dc.referencesOkólski M., (2003), Kryzys zdrowotny w Polsce, Polityka Społeczna, nr 1.pl_PL
dc.referencesOksendal B., (2003), Stochastic Differential Equations: An Introduction with applications, 6th ed., Springer Verlag, Heidelberg-New York.pl_PL
dc.referencesOpperman L., (1870), Insurance record 1870, 42-43, 46-47.pl_PL
dc.referencesOstasiewicz S., (2011), Aproksymacja czasu trwania życia w populacjach niejednorodnych, Zeszyty Naukowe WSOWL, 4 (162), 342-358.pl_PL
dc.referencesPapanicolau G., Kohler W.,(1974), Asymptotic theory of mixing stochastic ordinary differential equation, Commun. Pure Applied Math., 27, 641-668.pl_PL
dc.referencesPerks W. (1932), On some experiments in the graduation of mortality statistics, Journal of the Institute of Actuaries, 63, 12-40.pl_PL
dc.referencesPettitt A. N., (1984), Proportional Odds Model for Survival Data and Estimates Using Ranks, Applied Statistics, 33, 169-175.pl_PL
dc.referencesPitacco E., (2004), Survival models in a dynamic context: a survey, Insurance: Mathematics and Economics, 35, 279-298.pl_PL
dc.referencesPlat R., (2009), On stochastic mortality modeling, Insurance: Mathematics and Economics, 45, 393-404.pl_PL
dc.referencesPolovko A. M., (1968), Fundamentals of Reliability Theory, Academic Press, New York.pl_PL
dc.referencesPrentice R. L., (1974), A Log-Gamma Model and Its Maximum Likelihood Estimation, Biometrika, 61, 539-544.pl_PL
dc.referencesPreston S. H., Heuveline P., Guillot M., (2001), Demography. Measuring and Modeling Population Processes, Blackwell Publishing Ltd., Malden-Oxford-Carlton.pl_PL
dc.referencesProschan F., (1963), Theoretical Explanation of Observed Decreasing Failure Rate, Technometrics, 5, 375-385.pl_PL
dc.referencesPugachev V., Sinitsyn I., (1987), Stochastic Differential Systems: Analysis and Filtering, John Willey and Sons, Chichester.pl_PL
dc.referencesQuandt R. E., (1966), Old and New Methods of Estimation and the Pareto Distribution, Metrika, 10, 55-82.pl_PL
dc.referencesRenshaw A., Haberman S., (2003a), LeeCarter mortality forecasting with age-specific enhancement, Insurance: Mathematics and Economics, 33, 255-272.pl_PL
dc.referencesRenshaw A., Haberman S., (2003b), Lee-Carter mortality forecasting: a parallel generalized linear modelling approach for England and Wales mortality projections, Applied Statistics, 52, 119-137.pl_PL
dc.referencesRenshaw A., Haberman S., (2003c), On the forecasting of mortality reduction factors, Insurance: Mathematics and Economics, 32, 379-401.pl_PL
dc.referencesRenshaw A., Haberman S., (2006), A cohort-based extension to the Lee-Carter model for mortality reduction factor, Insurance: Mathematics and Economics, 38, 556-570.pl_PL
dc.referencesRenshaw A., Haberman S. (2008), On simulation-based approaches to risk measurement in mortality with specific reference to Poisson Lee-Carter modelling, Insurance: Mathematics and Economics, 42(2), 797-816.pl_PL
dc.referencesRossa A., Socha L. Szymański A., (2011), Analiza i modelowanie umieralności w ujęciu dynamicznym, Wyd. UŁ, Łódź.pl_PL
dc.referencesRossa A., Socha L., (2013), Proposition of Hybrid Stochastic Lee-Carter Mortality Model, Advances in Methodology and Statistics, 10(1), 1-16.pl_PL
dc.referencesRosset E., (1979), Trwanie życia ludzkiego, PWN, Warszawa.pl_PL
dc.referencesRusso V., Giacometti R., Ortobelli S., Rachev S., Fabozzi F. J., (2011), Calibrating affine stochastic mortality models using term assurance premiums, Insurance: Mathematics and Economics, 49, 53-60.pl_PL
dc.referencesSakai S., (1971), C*-algebras and W*-algebras, Springer Verlag, Berlin-Heidelberg-New York.pl_PL
dc.referencesSchrager D., (2006), Affine stochastic mortality, Insurance: Mathematics and Economics, 38, 81-97.pl_PL
dc.referencesShi P., Li F., (2015), A survey on Markovian jump systems: modeling and design, Int. J. Cont. Autom. Syst., 13, 1-16.pl_PL
dc.referencesSierpiński W., (1968), Arytmetyka teoretyczna, PWN, Warszawa.pl_PL
dc.referencesSobczyk K., (1996), Stochastyczne równania różniczkowe, WNT, Warszawa.pl_PL
dc.referencesSocha L., (1993), Równania momentów w stochastycznych układach dynamicznych, PWN, Warszawa.pl_PL
dc.referencesSocha L., (2008), Linearization Methods for Stochastic Dynamic Systems, Springer, Berlin.pl_PL
dc.referencesStacy E. W., (1962), A Generalization of the Gamma Distribution, The Annals of Mathematical Statistics, 33, 1187-1192.pl_PL
dc.referencesStacy E. W., Mihram G. A., (1965), Parameter Estimation for a Generalized Gamma Distribution, Technometrics, 7, 349-358.pl_PL
dc.referencesSteffensen, J. (1930), Om sandsynligheden for at afkommet uddor, Matematisk tidsskrift. B, 19-23.pl_PL
dc.referencesSteward G. W. (1993), On the Early History of the Singular Value Decom-position, SIAM Review, 35(4), 551-566.pl_PL
dc.referencesStratonovich R., (1960), A new form of representation of stochastic integral and equations, SIAM Journal on Control and Optimization, 4, 362-371.pl_PL
dc.referencesSzymański A., Rossa A. (2014), Fuzzy mortality model based on Banach algebra, International Journal of Intelligent Technologies and Applied Statistics, 7(3), 241-265.pl_PL
dc.referencesTabeau E., Berg Jehs A., Heathcote Ch. (eds.), (2001), Forecasting Mortality in Developed Countries. Insights from Statistical, Demographic and Epidemiological Perspective, Kluwer Academic Publishers, London.pl_PL
dc.referencesThatcher A. R., Kannisto V., Vaupel J. W., (1998), The force of mortality at ages 80 to 120, Monographs on Population Aging, vol. 5, Aging Research Center, Centre for Health and Social Policy, Odense University.pl_PL
dc.referencesTeel A., Subbaraman A., Sferlazza A., (2014), Stability analysis for stochastic hybrid systems: A survey, Automatica, 50, 2435-2456.pl_PL
dc.referencesThiele T. N., Sprague T., (1871), On a mathematical formula to express the rate of mortality throughout the whole of life tested by a series of observations made use of by the danish life insurance company of 1871, Journal of the Institute of Actuaries, 16(5), 313-329.pl_PL
dc.referencesWang Ch.-W., Huang H.-Ch, Liu I-Ch., (2011), A Quantitative Comparison of the Lee-Carter Model under Different Types of Non-Gaussian Innovations, The Geneva Papers on Risk and Insurance – Issues and Practice, vol. 36(4), 675-696.pl_PL
dc.referencesWeibull W., (1939), Statistical Theory of the Strength of Materials, Ingenioor Vetenskps Akademiens Handlingar, 151, 1-45.pl_PL
dc.referencesWilmoth J. R., (1993), Computational methods for fitting and extrapolating the Lee-Carter model of mortality change. Technical report, University of California, in: http://www.demog.berkeley.edu/jrw/Papers/LCtech.pdfpl_PL
dc.referencesWilmoth J. R., Horiuchi S., (1999), Rectangularization revised: variability of age at death within human populations, Demography, 36(4), 475-495.pl_PL
dc.referencesWinkelbauer A., (2014), Moments and Absolute Moments of the Normal Distribution, Working Paper, Cornell University Library, available on-line: https://arxiv.org/abs/1209.4340pl_PL
dc.referencesWittstein J., Bumsted D. (1883), The mathematical law of mortality, Journal of the Institute of Actuaries and Assurance Magazine, 24(3), 153-173.pl_PL
dc.referencesWong E., (1971), Stochastic Processes in Information Theory and Dynamical Systems, McGraw-Hill, New York.pl_PL
dc.referencesWu S. J., (2003), Estimation for the Two-Parameter Pareto Distribution under Progressive Censoring with Uniform Removals, Journal of Statistical Computation and Simulation, 73, 125-134.pl_PL
dc.referencesWunsch G., Mouchart M., Duchene J. (eds.), 2002, The Life Table: Modelling Survival and Death, Springer-Science+Business Media B.V.pl_PL
dc.referencesVan Berkum F., Antonio K., Vellekoop M., (2013), Structural changes in mortality rates with an application to Dutch and Belgian data, Workin Paper, KU Leuven.pl_PL
dc.referencesVan der Maen W. J., (1943), Het berekenen van sterftekansen, Verz.-Arch., 24, 281-300.pl_PL
dc.referencesVasiček O., (1977), An equilibrium characterization of the term structure, Journal of Financial Economics, 5, 177-188.pl_PL
dc.referencesVaupel J. W., Zhang Z., van Raalte A. A., Life expectancy and disparity: an international comparison of life table data, in: BMJ Open 2011;1:e000128, doi:10.1136/bmjopen-2011-000128.pl_PL
dc.referencesYashin A. I., Arbeev K. G., Akushevich I., Kulminski A., Akushevich L., Ukraintseva S. V., (2207), Stochastic model for analysis of longitudinal data on aging and mortality, Mathematical Biosciences, vol. 208(2), 538-551.pl_PL
dc.referencesYin G., Zhang Q., Yang H., Yin K., (2002), A class of hybrid market models: simulation, identification and estimation, Proceedings of the American Control Conference, Anchorage, May 8-10, 2571-2576.pl_PL
dc.referencesYin G., Zhang Q., Yang H., Yin K., (2003), Constrained stochastic estimation algorithms for a class of hybrid stock market models, Journal of Optimization Theory and Applications, 118, 157-182.pl_PL
dc.referencesYin G. G., Zhu C., (2010), Hybrid Switching Diffusions: Properties and Applications, Springer Science + Bussiness Media, New York.pl_PL
dc.referencesZadeh L., (1965), Fuzzy Sets, Information and Control, 8, 338-353.pl_PL
dc.referencesZimmermann H.-J., (1996), Fuzzy Set Theory – and its Applications, fourth edition, Springer Science + Bussiness Media, New York.pl_PL
dc.referencesZippin C., Armitage P., (1966), Use of Concomitant Variables and Incomplete Survival Information in the Estimation of an Exponential Survival Parameter, Biometrics, 22, 665-672.pl_PL
dc.referencesŻelazko W., (1968), Algebry Banacha, Biblioteka Matematyczna, t. 32, PWN, Warszawa.pl_PL
dc.identifier.doi10.18778/8088-926-2
dc.disciplinenauki socjologicznepl_PL


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe