Pokaż uproszczony rekord

dc.contributor.authorSulewski, Piotr
dc.date.accessioned2024-08-02T09:07:17Z
dc.date.available2024-08-02T09:07:17Z
dc.date.issued2024-06-20
dc.identifier.issn0208-6018
dc.identifier.urihttp://hdl.handle.net/11089/52942
dc.description.abstractThis article addresses the problem of proper adjustment of the theoretical probability distribution to the empirical distribution of scanner prices. In the empirical study, we use scanner data from one retail chain in Poland, i.e., monthly data on natural yogurt, yogurt drinks, long grain rice and coffee powder sold in 212 outlets in January and February 2022. Prices and relative prices are modelled using fifty two‑, three‑, four‑, and five‑parameter probability distributions with non‑negative support. Some of them consist of somewhat known distributions which are called their special cases. The study indirectly involves over a hundred of these distributions. Information criteria such as AIC, BIC, HQIC and p‑values of goodness‑of‑fit tests are used for comparative analysis. This article shows that models such as Frechet, Pareto IV  and Log‑Logistic could be distinguished as very accurate, which provides a good background for simulation research on price indices or for the construction of the so‑called population price indices. The Appendix presents the cumulative distribution function formulas of the models used and the necessary R codes for conducting the research.en
dc.description.abstractW artykule podjęto problematykę odpowiedniego dopasowania teoretycznego rozkładu prawdopodobieństwa do empirycznego rozkładu cen skanerów. W badaniu empirycznym wykorzystano dane skanerowe z jednej sieci handlowej w Polsce, tj. miesięczne dane dotyczące jogurtów naturalnych, napojów jogurtowych, ryżu długoziarnistego i kawy w proszku, sprzedanych w 212 placówkach w styczniu i lutym 2022 roku. Ceny i ceny względne modelowano za pomocą pięćdziesięciu dwu‑, trzy‑, cztero‑ i pięcioparametrowych rozkładów prawdopodobieństwa z nieujemną dziedziną. Niektóre z nich składały się z dość znanych rozkładów, które nazywane są ich specjalnymi przypadkami. Łączna liczba tych rozkładów, które pośrednio wzięły udział w badaniu, to ponad sto. Do analizy porównawczej wykorzystywano kryteria informacyjne, takie jak AIC, BIC, HQIC i wartości p testów dobroci dopasowania. W artykule wykazano, że modele takie jak Frechet, Pareto IV  i Log‑Logistic można uznać za bardzo dokładne, co stanowi dobrą podstawę do badań symulacyjnych wskaźników cen czy też konstrukcji tzw. wskaźników cen ludności. Wzory na dystrybuantę wykorzystanych modeli oraz kody R niezbędne do przeprowadzenia badań przedstawiono w załączniku.pl
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesActa Universitatis Lodziensis. Folia Oeconomica;366en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subjectdata modelingen
dc.subjectscanner dataen
dc.subjectprice distributionsen
dc.subjectmodelowanie danychpl
dc.subjectdane skanowanepl
dc.subjectrozkłady cenpl
dc.titleProbability Distribution Modelling of Scanner Prices and Relative Prices Using Theoretical Distributions with Two, Three, Four, and Five Parametersen
dc.title.alternativeModelowanie rozkładu cen skanowanych i indeksów cen za pomocą rozkładów teoretycznych z dwoma, trzema, czterema i pięcioma parametramipl
dc.typeArticle
dc.page.number23-61
dc.contributor.authorAffiliationPomeranian University Słupsk, Institute of Exact and Technical Sciences, Polanden
dc.identifier.eissn2353-7663
dc.referencesAbdollahi Nanvapisheh A. (2019), A New Five Parameter Distribution: Properties and Applications, “International Journal of Mathematical Modelling and Computations”, vol. 9(3), pp. 201–212.en
dc.referencesAkaike H. (1974), A new look at the statistical model identification, “IEEE Transactions on Automatic Control”, vol. 19(6), pp. 716–723.en
dc.referencesAl Babtain A., Eid A.M., Ahmed A.H.N., Merovci F. (2015), The five parameter Lindley distribution, “Pakistan Journal of Statistics”, vol. 31(4).en
dc.referencesAwodutire P. (2020), Chen Pareto Distribution: Properties and Application, “Pakistan Journal of Statistics and Operation Research”, vol. 16(4), pp. 812–826.en
dc.referencesBakouch H.S., Saboor A., Khan M.N. (2021), Modified beta linear exponential distribution with hydrologic applications, “Annals of Data Science”, no. 8, pp. 131–157.en
dc.referencesBarreto Souza W., Morais A.L. de, Cordeiro G.M. (2011), The Weibull geometric distribution, “Journal of Statistical Computation and Simulation”, vol. 81(5), pp. 645–657.en
dc.referencesBarreto Souza W., Santos A.H., Cordeiro G.M. (2010), The beta generalized exponential distribution, “Journal of Statistical Computation and Simulation”, vol. 80(2), pp. 159–172.en
dc.referencesBebbington M., Lai C.D., Zitikis R. (2007), A flexible Weibull extension, “Reliability Engineering and System Safety”, vol. 92(6), pp. 719–726.en
dc.referencesBemmaor A.C. (1994), Modeling the diffusion of new durable goods: Word of mouth effect versus consumer heterogeneity, [in:] G. Laurent, G.L. Lilien, B. Pras (eds.), Research Traditions in Marketing, Kluwer, Boston, pp. 201–229.en
dc.referencesBiałek J. (2015), Construction of confidence intervals for the Laspeyres price index, “Journal of Statistical Computation and Simulation”, vol. 85(14), pp. 2962–2973.en
dc.referencesBiałek J. (2022), Elementary price indices under the GBM price model, “Communications in Statistics – Theory and Methods”, vol. 51(5), pp. 1232–1251.en
dc.referencesBiałek J., Beręsewicz M. (2021), Scanner data in inflation measurement: from raw data to price indices, “The Statistical Journal of the IAOS”, no. 37, pp. 1315–1336.en
dc.referencesBiałek J., Bobel A. (2019), Comparison of price index methods for CPI measurement using scanner data, 16th Meeting of the Ottawa Group on Price Indices, Rio de Janeiro.en
dc.referencesBirnbaum Z.W., Saunders S.C. (1969), A new family of life distributions, “Journal of Applied Probability”, vol. 6(2), pp. 637–652.en
dc.referencesBourguignon M., Lima M.D.C.S., Leão J., Nascimento A.D., Pinho L.G.B., Cordeiro G.M. (2015), A new generalized gamma distribution with applications, “American Journal of Mathematical and Management Sciences”, vol. 34(4), pp. 309–342.en
dc.referencesBrandt S. (2014), Data analysis, Springer International Publishing, Switzerland.en
dc.referencesBrazauskas V. (2003), Information matrix for Pareto (IV), Burr, and related distributions, “Communications in Statistics Theory and Methods”, vol. 32(2), pp. 315–325.en
dc.referencesCarli G. (1804), Del valore e della proporzione de’metalli monetati, “Scrittori Classici Italiani di Economia Politica”, no. 13, pp. 297–336.en
dc.referencesCarrasco J.M., Ortega E.M., Cordeiro G.M. (2008), A generalized modified Weibull distribution for lifetime modelling, “Computational Statistics and Data Analysis”, vol. 53(2), pp. 450–462.en
dc.referencesCastillo E., Hadi A.S., Balakrishnan N., Sarabia J.S. (2005), Extreme Value and Related Models with Applications in Engineering and Science, Wiley Interscience, Hoboken.en
dc.referencesChen Z. (2000), A new two parameter lifetime distribution with bathtub shape or increasing failure rate function, “Statistics and Probability Letters”, no. 49, pp. 155–161.en
dc.referencesChesneau C., Bakouch H.S., Hussain T. (2018), A new class of probability distributions via cosine and sine functions with applications, “Communications in Statistics Simulation and Computation”, vol. 48(8), pp. 2287–2300.en
dc.referencesChhikara R.S., Folks J.L. (1989), The Inverse Gaussian Distribution: Theory, Methodology and Applications, Marcel Dekker, New York.en
dc.referencesCooray K. (2006), Generalization of the Weibull distribution: The odd Weibull family, “Statistical Modelling”, vol. 6(3), pp. 265–277.en
dc.referencesCordeiro G.M., Ortega E.M., Silva G.O. (2011), The exponentiated generalized gamma distribution with application to lifetime data, “Journal of Statistical Computation and Simulation”, vol. 81(7), pp. 827–842.en
dc.referencesCordeiro G.M., Castellares F., Montenegro L.C., Castro M. de (2013), The beta generalized gamma distribution, “Statistics”, vol. 47(4), pp. 888–900.en
dc.referencesDrapella A. (1993), The complementary Weibull distribution: unknown or just forgotten?, “Quality and Reliability Engineering International”, vol. 9(4), pp. 383–385.en
dc.referencesDutot C.F. (1738), Reflexions Politiques sur les Finances et le Commerce, Les Freres, The Hague.en
dc.referencesEl Gohary A., Alshamrani A., Al Otaibi A.N. (2013), The generalized Gompertz distribution, “Applied Mathematical Modelling”, vol. 37(1–2), pp. 13–24.en
dc.referencesEl Gohary A., El Bassiouny A.H., El Morshedy M. (2015), Inverse flexible Weibull extension distribution, “International Journal of Computer Applications”, vol. 115(2), pp. 46–51.en
dc.referencesEltehiwy M., Ashour S. (2013), Transmuted Exponentiated Modified Weibull Distribution, “International Journal of Basic and Applied Sciences”, vol. 2(3), pp. 258–269.en
dc.referencesFelipe R.Sd.G., Edwin M.M.O, Gauss M.C. (2009), The generalized inverse Weibull distribution, “Statistical Papers”, vol. 52(3), pp. 591–619.en
dc.referencesGaddum J.H. (1945), Lognormal distributions, “Nature”, vol. 156(3964), pp. 463–466.en
dc.referencesGhitany M.E., Al Hussaini E.K., Al Jarallah R.A. (2005), Marshall–Olkin extended Weibull distribution and its application to censored data, “Journal of Applied Statistics”, vol. 32(10), pp. 1025–1034.en
dc.referencesGhitany M.E., Al Mutairi D.K., Balakrishnan N., Al Enezi L.J. (2013), Power Lindley distribution and associated inference, “Computational Statistics and Data Analysis”, no. 64, pp. 20–33.en
dc.referencesGumbel E.J. (1958), Statistics of Extremes, Columbia University Press, New York.en
dc.referencesHannan E.J., Quinn B.G. (1979), The determination of the order of an autoregression, “Journal of the Royal Statistical Society: Series B (Methodological)”, vol. 41(2), pp. 190–195.en
dc.referencesJaved M., Nawaz T., Irfan M. (2019), The Marshall Olkin kappa distribution: properties and applications, “Journal of King Saud University Science”, vol. 31(4), pp. 684–691.en
dc.referencesJevons W.S. (1865), The variation of prices and the value of the currency since 1782, “Journal of the Statistical Society of London”, no. 28, pp. 294–320.en
dc.referencesJędrzejczak A., Pekasiewicz D. (2020), Teoretyczne rozkłady dochodów gospodarstw domowych i ich estymacja, Wydawnictwo Uniwersytetu Łódzkiego, Łódź.en
dc.referencesJohnson N.L., Kotz S., Balakrishnan N. (1995), Continuous univariate distributions, vol. 2, John Wiley & Sons, New York.en
dc.referencesKleiber C., Kotz S. (2003), Statistical Size Distributions in Economics and Actuarial Sciences, Wiley Interscience, Hoboken.en
dc.referencesKotz S., Nadarajah S. (2000), Extreme Value Distributions: Theory and Applications, Imperial College Press, London.en
dc.referencesLindsey J.K. (2004), Statistical analysis of stochastic processes in time, vol. 14, Cambridge University Press, Cambridge.en
dc.referencesLu W., Shi D. (2012), A new compounding life distribution: the Weibull–Poisson distribution, “Journal of Applied Statistics”, vol. 39(1), pp. 21–38.en
dc.referencesMahdavi A. (2015), Two Weighted Distributions Generated by Exponential Distribution, “Journal of Mathematical Extension”, vol. 9(1), pp. 1–12.en
dc.referencesMcDonald J.B. (1984), Some generalized functions for the size distribution of income, “Econometrica”, vol. 52(3), pp. 647–663.en
dc.referencesNadarajah S., Rocha R. (2016), Newdistns: An R package for new families of distributions, “Journal of Statistical Software”, no. 69, pp. 1–32.en
dc.referencesNakagami M. (1960), The m Distribution – A General Formula of Intensity Distribution of Rapid Fading, [in:] W.C. Hoffman (ed.), Statistical Methods in Radio Wave Propagation, Pergamon, Oxford, pp. 3–36.en
dc.referencesOkasha H.M., El Baz A.H., Tarabia A.M.K., Basheer A.M. (2017), Extended inverse Weibull distribution with reliability application, “Journal of the Egyptian Mathematical Society”, vol. 25(3), pp. 343–349.en
dc.referencesPal M., Tiensuwan M. (2015), Exponentiated transmuted modified Weibull distribution, “European Journal of Pure and Applied Mathematics”, vol. 8(1), pp. 1–14.en
dc.referencesR Core Team (2021), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, https://www.R project.org/ [accessed: 24.11.2023].en
dc.referencesSarhan A.M., Apaloo J. (2013), Exponentiated modified Weibull extension distribution, “Reliability Engineering and System Safety”, no. 112, pp. 137–144.en
dc.referencesSarhan A.M., Zaindin M. (2009), Modified Weibull distribution, “APPS. Applied Sciences”, no. 11, pp. 123–136.en
dc.referencesSchwarz G. (1978), Estimating the dimension of a model, “The Annals of Statistics”, vol. 6(2), pp. 461–464.en
dc.referencesShahbaz M.Q., Shahbaz S., Butt N.S. (2012), The Kumaraswamy–Inverse Weibull Distribution, “Pakistan Journal of Statistics and Operation Research”, vol. 8(3), pp. 479–489.en
dc.referencesShanker S., Shukla K.K. (2019), A generalization of Generalized Gamma distribution, “International Journal of Computational and Theoretical Statistics”, vol. 6(1), pp. 33–42.en
dc.referencesSilver H., Heravi S. (2007), Why elementary price index number formulas differ: Evidence on price dispersion, “Journal of Econometrics”, no. 140, pp. 874–883.en
dc.referencesStacy E.W., Mihram G.A. (1965), Parameter estimation for a generalized gamma distribution, “Technometrics”, vol. 7(3), pp. 349–358.en
dc.referencesSubhradev S., Mustafa C.K., Haitham M.Y. (2018), The Quasi XGamma Poisson distribution: Properties and Application, “Istatistik: Journal of the Turkish Statistical Assocation”, vol. 11(3), pp. 65–76.en
dc.referencesSulewski P., Białek J. (2022), Probability Distribution Modelling of Scanner Prices and Relative Prices, “Statistika: Statistics & Economy Journal”, vol. 102(3).en
dc.referencesTieling Z., Min X. (2007), Failure Data Analysis with Extended Weibull Distribution, “Communications in Statistics – Simulation and Computation”, no. 36, pp. 579–592.en
dc.referencesWitkovsky V. (2001), Computing the distribution of a linear combination of inverted gamma variables, “Kybernetika”, vol. 37(1), pp. 79–90.en
dc.referencesYusuf A., Qureshi S. (2019), A five parameter statistical distribution with application to real data, “Journal of Statistics Applications and Probability Letters”, no. 8, pp. 11–26.en
dc.contributor.authorEmailpiotr.sulewski@upsl.edu.pl
dc.identifier.doi10.18778/0208-6018.366.02
dc.relation.volume1


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by/4.0