Pokaż uproszczony rekord

dc.contributor.authorPangsy‑Kania, Sylwia
dc.contributor.authorBiegańska, Justyna
dc.contributor.authorFlouros, Floros
dc.date.accessioned2025-01-07T13:37:01Z
dc.date.available2025-01-07T13:37:01Z
dc.date.issued2024-12-19
dc.identifier.issn1508-2008
dc.identifier.urihttp://hdl.handle.net/11089/54099
dc.description.abstractThe deployment of alternatively fueled (AF) vehicles constitutes an important measure in meeting the European Union’s (EU’s) climate goals. The study aims to characterize and evaluate, in a comparative manner, the current stage of the adoption of AF passenger cars into the general (M1) passenger car fleet in the EU member states. The focal point of the study is the exploration of similarities and differences observed between the EU countries regarding the current structure of AF passenger car fleets, as well as development trends in this area. In this context, a clear scheme of “two speeds” emerges – parallel to the rapid diffusion of electric vehicles in the Nordic and Western European countries, the size and structure of the AF M1 vehicle stock remained largely unchanged in the Central‑European countries, with the dominant role of widely established liquified petroleum gas (LPG). The findings highlight the need to diversify the range of alternative fuels, which should be introduced gradually, in line with the classification proposed by the European Parliament and the Council.en
dc.description.abstractRozszerzenie floty pojazdów napędzanych paliwami alternatywnymi stanowi ważny instrument realizacji celów klimatycznych Unii Europejskiej. Celem badania jest scharakteryzowanie i ocena, w sposób porównawczy, obecnego etapu popularyzacji samochodów osobowych napędzanych paliwami alternatywnymi w państwach członkowskich UE. Punktem centralnym badania jest eksploracja podobieństw i różnic obserwowanych pomiędzy krajami unijnymi w odniesieniu do aktualnej struktury floty pojazdów napędzanych paliwami alternatywnymi oraz tendencji rozwojowych w tym zakresie. W tym kontekście zaobserwować można wyraźny schemat „dwóch prędkości” – równolegle do szybkiego rozpowszechniania pojazdów elektrycznych w krajach skandynawskich i zachodnioeuropejskich wielkość i struktura floty pojazdów napędzanych alternatywnie pozostała w dużej mierze niezmieniona w krajach Europy Środkowej, z wciąż dominującą rolą utrwalonego na tych rynkach skroplonego gazu płynnego (LPG). Wyniki badania podkreślają potrzebę dywersyfikacji paliw alternatywnych, które należy wprowadzać stopniowo, zgodnie z klasyfikacją zaproponowaną w dyrektywie 2014/94/UE Parlamentu Europejskiego i Rady.pl
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesComparative Economic Research. Central and Eastern Europe;4pl
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectalternative fuelsen
dc.subjectsustainable innovationen
dc.subjectsustainable developmenten
dc.subjectpassenger car fleeten
dc.subjectEU–27en
dc.subjectenvironmenten
dc.subjectpaliwa alternatywnepl
dc.subjectzrównoważone innowacjepl
dc.subjectzrównoważony rozwójpl
dc.subjectflota samochodów osobowychpl
dc.subjectUE–27pl
dc.subjectśrodowiskopl
dc.titleAlternative Fuels as a Sustainable Innovation in Vehicle Fleet Across the EU–27: Diagnosis and Prospects for Developmenten
dc.title.alternativePaliwa alternatywne jako zrównoważona innowacja we flocie pojazdów UE–27: diagnoza i perspektywy rozwojupl
dc.typeArticle
dc.page.number173-194
dc.contributor.authorAffiliationPangsy‑Kania, Sylwia - University of Gdańsk, Faculty of Economics, Gdańsken
dc.contributor.authorAffiliationBiegańska, Justyna - Gdynia Maritime University, Faculty of Management and Quality Scienceen
dc.contributor.authorAffiliationFlouros, Floros - Neapolis University, Department of History, Politics and International Studiesen
dc.identifier.eissn2082-6737
dc.referencesAdomako, S., Nguyen, N.P. (2023), Co‑innovation behavior and sustainable innovation in competitive environments, “Sustainable Development”, 31 (3), pp. 1735–1747, https://doi.org/10.1002/sd.2479en
dc.referencesAlternative Fuels Data Center (n.d.), Alternative Fuels and Advanced Vehicles, https://afdc.energy.gov/fuels/ (accessed: 16.09.2023).en
dc.referencesAlternative Fuels Data Center (n.d.), Ethanol Fuel Basics, https://afdc.energy.gov/fuels/ethanol_fuel_basics.html (accessed: 16.09.2023).en
dc.referencesAlternative Fuels Data Center (n.d.), Hydrogen, https://afdc.energy.gov/fuels/hydrogen.html (accessed: 16.09.2023).en
dc.referencesAlternative Fuels Data Center (n.d.), Natural Gas, https://afdc.energy.gov/fuels/natural_gas.html (accessed: 16.09.2023).en
dc.referencesAlternative Fuels Data Center (n.d.), Propane Benefits and Considerations, https://afdc.energy.gov/fuels/propane_benefits.html (accessed: 16.09.2023).en
dc.referencesBasiago, A.D. (1995), Methods of defining ‘sustainability’, “Sustainable Development”, 3 (3), pp. 109–119, https://doi.org/10.1002/sd.3460030302en
dc.referencesBreitkreuz, K., Menne, A., Kraft, A. (2014), New process for sustainable fuels and chemicals from bio‑based alcohols and acetone, “Biofuels, Bioproducts and Biorefining”, 8 (4), pp. 504–515, https://doi.org/10.1002/bbb.1484en
dc.referencesCillo, V., Petruzzelli, A.M., Ardito, L., Del Giudice, M. (2019), Understanding sustainable innovation: A systematic literature review, “Corporate Social Responsibility and Environmental Management”, 26 (5), pp. 1012–1025, https://doi.org/10.1002/csr.1783en
dc.referencesDesJardins, J. (2015), Sustainability, [in:] Wiley Encyclopedia of Management, https://doi.org/10.1002/9781118785317.weom020212en
dc.referencesDHL (n.d.), Alternative fuels: What the future holds?, https://www.dhl.com/global‑en/delivered/sustainability/future‑of‑alternative‑fuels.html (accessed: 15.09.2023).en
dc.referencesEuropean Alternative Fuels Observatory (n.d.), About the European Alternative Fuels Observatory, https://alternative‑fuels‑observatory.ec.europa.eu/general‑information/about‑european‑alternative‑fuels‑observatory (accessed: 20.09.2023).en
dc.referencesEuropean Alternative Fuels Observatory (n.d.), Alternative fuels, https://alternative‑fuels‑observatory.ec.europa.eu/general‑information/alternative‑fuels (accessed: 5.10.2023).en
dc.referencesEuropean Alternative Fuels Observatory (2023), Road, https://alternative‑fuels‑observatory.ec.europa.eu/transport‑mode/road (accessed: 11.09.2023).en
dc.referencesEuropean Commission (2021), Proposal for a Regulation of the European Parliament and of the Council on the deployment of alternative fuels infrastructure, and repealing Directive 2014/94/EU of the European Parliament and of the Council, https://eur‑lex.europa.eu/resource.html?uri=cellar:dbb134db‑e575-11eb‑a1a5-01aa75ed71a1.0001.02/DOC_1&format=PDF (accessed: 18.09.2023).en
dc.referencesEuropean Council for an Energy Efficient Economy (2023), Effort Sharing Regulation, https://www.eceee.org/policy‑areas/product‑policy/effort‑sharing‑regulation/ (accessed: 3.10.2023).en
dc.referencesEuropean Environment Agency (2020), EC, 2020, “2050 long‑term strategy”, https://www.eea.europa.eu/policy‑documents/ec-2020-2050‑long‑term‑strategy (accessed: 20.09.2023).en
dc.referencesEurostat (2023), Passenger cars, by type of motor energy [ROAD_EQS_CARPDA], https://ec.europa.eu/eurostat/databrowser/view/road_eqs_carpda/default/table?lang=en (accessed: 30.09.2023).en
dc.referencesEVgo (n.d.), Types of Electric Vehicles, https://www.evgo.com/ev‑drivers/types‑of‑evs/ (accessed: 15.09.2023).en
dc.referencesExxonMobil (n.d.), EMRD renewable diesel process technology, https://www.exxonmobilchemical.com/en/catalysts‑and‑technology‑licensing/emrd?utm_source=google&utm_medium=cpc&utm_campaign=cl_emrd_none&ds_k=renewable+diesel&gclsrc=aw.ds&&ppc_keyword=renewable%20diesel&gclid=EAIaIQobChMIkLuw1ceugQMVfkZBAh13cgScEAAYASAAEgII1_D_BwE (accessed: 16.09.2023).en
dc.referencesFarghali, M., Osman, A.I., Chen, Z., Abdelhaleem, A., Ihara, I., Mohamed, I.M.A., Yap, P.‑S., Rooney, D.W. (2023), Social, environmental, and economic consequences of integrating renewable energies in the electricity sector: a review, “Environmental Chemistry Letters”, 21, pp. 1381–1418, https://doi.org/10.1007/s10311-023-01587-1en
dc.referencesHuang, D., Zhou, H., Lin, L. (2012), Biodiesel: an Alternative to Conventional Fuel, “Energy Procedia”, 16 (C), pp. 1874–1885, https://doi.org/10.1016/j.egypro.2012.01.287en
dc.referencesIDTechEx (n.d.), Sustainable Alternative Fuels 2021–2031, https://www.idtechex.com/en/research‑report/sustainable‑alternative‑fuels-2021-2031/799 (accessed: 15.09.2023).en
dc.referencesInternational Energy Agency (2018), Nordic EV Outlook 2018. Insights from leaders in electric mobility, https://doi.org/10.1787/9789264293229‑enen
dc.referencesKumar, M. (2020), Social, Economic, and Environmental Impacts of Renewable Energy Resources, [in:] K.E. Okedu, A. Tahour, A.G. Aissaou (eds.), Wind Solar Hybrid Renewable Energy System, IntechOpen, pp. 227–238, https://doi.org/10.5772/intechopen.89494en
dc.referencesLiu, F., Su, C.W., Qin, M., Umar, M. (2023), Is renewable energy a path towards sustainable development?, “Sustainable Development”, 31 (5), pp. 3869–3880, https://doi.org/10.1002/sd.2631en
dc.referencesLuo, Z., Hu, Y., Xu, H., Gao, D., Li, W. (2020), Cost‑Economic Analysis of Hydrogen for China’s Fuel Cell Transportation Field, “Energies”, 13 (24), 6522, https://doi.org/10.3390/en13246522en
dc.referencesMartin, A.J., Larrazabal, G.O., Perez‑Ramirez, J. (2015), Towards sustainable fuels and chemicals through the electrochemical reduction of CO2: lessons from water electrolysis, “Green Chemistry”, 12, pp. 5114–5130, https://doi.org/10.1039/C5GC01893Een
dc.referencesNasiri, M., Saunila, M., Rantala, T., Ukko, J. (2022), Sustainable innovation among small businesses: The role of digital orientation, the external environment, and company characteristics, “Sustainable Development”, 30 (4), pp. 703–712, https://doi.org/10.1002/sd.2267en
dc.referencesNo, S.‑Y. (2019), Parffinic Biofuels: HVO, BTL Diesel, and Farnesane, [in:] S.‑Y. No, Application of Liquid Biofuels to Internal Combustion Engines, Springer Nature Singapore Pte Ltd., Singapore, pp. 147–179, https://doi.org/10.1007/978-981-13-6737-3_4en
dc.referencesThomas, G., Parks, G. (2006), Potential Roles of Ammonia in a Hydrogen Economy. A Study of Issues Related to the Use Ammonia for On‑Board Vehicular Hydrogen Storage, U.S. Department of Energy, https://www.energy.gov/eere/fuelcells/articles/potential‑roles‑ammonia‑hydrogen‑economy (accessed: 19.09.2023).en
dc.referencesUnited Nations Economic Commission for Europe (2023), Consolidated Resolution on the Construction of Vehicles (R.E.3). Revision 7, https://unece.org/sites/default/files/2023-12/ECE_TRANS_WP.29_78_Rev.7e.pdf (accessed: 20.10.2023).en
dc.referencesWorld LPG Association (WLPG), Liquid Gas Europe (2022), Autogas Incentive Policies, https://www.liquidgaseurope.eu/wp‑content/uploads/2024/05/Autogas_Incentive_Policies_2022.pdf (accessed: 1.06.2024).en
dc.contributor.authorEmailPangsy‑Kania, Sylwia - sylwia.pangsy-kania@ug.edu.pl
dc.contributor.authorEmailBiegańska, Justyna - j.bieganska@wznj.umg.edu.pl
dc.contributor.authorEmailFlouros, Floros - f.flouros@nup.ac.cy
dc.identifier.doi10.18778/1508-2008.27.36
dc.relation.volume27


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0