Show simple item record

dc.contributor.authorTomczyk, Jacek
dc.contributor.authorRegulski, Piotr
dc.contributor.authorGóralczyk, Katarzyna
dc.contributor.authorTylko, Grzegorz
dc.date.accessioned2025-07-07T06:50:41Z
dc.date.available2025-07-07T06:50:41Z
dc.date.issued2025-05-19
dc.identifier.issn1898-6773
dc.identifier.urihttp://hdl.handle.net/11089/55846
dc.description.abstractThe purpose of this study was to evaluate the calcium (Ca) and phosphorus (P) contents of pulp stones in a historical population (18th–19th centuries) from Radom, Poland. Ten molars from adults from the Radom cemetery (18th–19th centuries) were used in the study. The crowns of the teeth were mechanically opened, and visible pulp stones were examined with a scanning electron microscope equipped with a Si(Li) energy dispersive detector (energy dispersive X-ray spectrometry detector, which uses a lithium (Li)- doped silicon (Si) single-crystal semiconductor as a detector element). Enamel presented higher values of Ca/P ratio compared with the dentine and/or pulp stones. Moreover, in one case, the external layer of the pulp stone had significantly lower Ca and P contents compared with the internal layer (Ca: 13.97±0.31 vs. 34.2±0.37 [wt%]; P: 6.13±0.21 vs. 16.5±0.34 [wt%]). Evaluation of the Ca and P composition of the analyzed enamel and dentine in the Radom samples from the 18th–19th centuries produced findings that are consistent with studies conducted on teeth from contemporary populations. In the case of one individual, two chemically distinct layers were diagnosed in the pulp stone. It is difficult to interpret this finding based on a single case, but it may be due to the fact that the outer layer is characterized by higher organic structure.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesAnthropological Review;2en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectpulp stonesen
dc.subjectcalciumen
dc.subjectphosphorusen
dc.subjectmineralizationen
dc.titleChemical Characterization of Archaeological Pulp Stones from 18th–19th Century Radom, Poland: A Pilot Studyen
dc.typeArticle
dc.page.number17-26
dc.contributor.authorAffiliationTomczyk, Jacek - Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw, Polanden
dc.contributor.authorAffiliationRegulski, Piotr - Department of Dental and Maxillofacial Radiology, Medical University of Warsaw, Polanden
dc.contributor.authorAffiliationGóralczyk, Katarzyna - Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw, Polanden
dc.contributor.authorAffiliationTylko, Grzegorz - Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Polanden
dc.identifier.eissn2083-4594
dc.referencesAl-Ghurabi ZH, Najm AA. 2012. Prevalence of pulp stone (Orthopantomographicbased). JBCD 24:80–4.en
dc.referencesArnold WH, Gaengler P. 2007. Quantitative analysis of the calcium and phosphorus content of developing and permanent human teeth. Ann Anat 189:183–90. https://doi.org/10.1016/j.aanat.2006.09.008en
dc.referencesBahetwar SK, Pandey RK, Singh RK, Bahetwar TS, Wahid A. 2012. A biochemical and histopathological evaluation of generalized pulp calcification in young permanent teeth. Indian. J Dent Res 23:123. https://doi.org/10.4103/0970-9290.99062en
dc.referencesBarnaś E, Chlebowska M, Hoehne T. 1972. Dentinomas. Czas Stomatol 25(12):1205–12.en
dc.referencesBerès F, Isaac J, Mouton L, Rouzière S, Berdal A, Simon S, Dessombz A. 2016. Comparative physicochemical analysis of pulp stone and dentin. J Endodont 42(3):432–38. https://doi.org/10.1016/j.joen.2015.11.007en
dc.referencesÇolak H, Çelebi AA, Hamidi MM, Bayraktar Y, Çolak T, Uzgur R. 2012. Assessment of the prevalence of pulp stones in a samples of Turkish central Anatolian population. Sci World J. https://doi.org/10.1100/2012/804278en
dc.referencesElvery MW, Savage NW, Wood WB. 1998. Radiographic study of the Broadbeach aboriginal dentition. Am J Phys Anthropol 107:211–19. https://doi.org/10.1002/(SICI)1096-8644(199810)107:23.0.CO;2-Xen
dc.referencesGaddalay S, Pathan M, Kale A, Ahhirao Y. 2015. Prevalence of pulp stones in urban and rural population of Latur Maharashtra and the challenges encountered: an endodontic perspectives. J Dent Med Sci 9:5–8. https://doi.org/10.9790/0853-14930508en
dc.referencesGoga R, Chandler NP, Oginni AO. 2008. Pulp stones: a review. Int Endodont J 41:457– 468. https://doi.org/10.1111/j.1365-2591.2008.01374.xen
dc.referencesGoldstein JI, Newbury DE, Joy DC, Lyman CE, Echlin P, Lifshin E, Sawyer E, Michael JR. 2018. Scanning Electron Microscopy and X-ray Microanalysis. New York: Plenum Press.en
dc.referencesGulsahi A, Cebeci AI, Özden S. 2009. A radiographic assessment of the prevalence of pulp stones in a group of Turkish dental patients. Int Endodont J 42:735–39. https://doi.org/10.1111/j.1365-2591.2009.01580.xen
dc.referencesHe B, Huang S, Zhang C, Jing J, Hao Y, Xiao L, Zhou X. 2011. Mineral densities and elemental content in different layers of healthy human enamel with varying teeth age. Arch Oral Biol 56:997–1004. https://doi.org/10.1016/j.archoralbio.2011.02.015en
dc.referencesHillson S. 1996. Dental anthropology. Cambridge: Cambridge University Press.en
dc.referencesHuang LG, Chen G. 2016. A histological and radiographic study of pulpal calcification in periodontally involved teeth in a Taiwanese population. J Dent Sci 11(4):405–10. https://doi.org/10.1016/j.jds.2016.05.001en
dc.referencesKaabi HH, Riyahi AM, Bakrman AK, Almutaw YA, Alrumayyan SF, Al-Maflehi NS. 2024. Pulp stones in unerupted teeth: a retrospective analysis using cone-beam computed tomography. BMC Oral Health 24:714. https://doi.org/10.1186/s12903-024-04503-3en
dc.referencesLe May O, Kaqueler C. 1993. Electron probe micro-analysis of human dental pulp stones. J Scan Micros 7:267–72.en
dc.referencesLiu H-Y, Chao J-H, Chuang C-Y, Chiu H-L, Yang C-W, Sun Y-C. 2013. Study of P, Ca, Sr, Ba and Pb levels in enamel and dentine of human third molars for environmental and archaeological research. Adv Anthropol 3(2):71–7. https://doi.org/10.4236/aa.2013.32010en
dc.referencesMarshall G, Verdelis K, Peters OA, 2023. Morphology of pulpal mineralizations: A scoping review. J Dent. https://doi.org/10.1016/j.jdent.2023.104745en
dc.referencesMilcent CPF, Da Silva TG, Baika LM, Grassi MT, Carneiro E, Franco A, De Lima AAS. 2019. Morphologic, structural, and chemical properties of pulp stones in extracted human teeth. J Endodont 45(12):1504–12. https://doi.org/10.1016/j.joen.2019.09.009en
dc.referencesMirah MA, Bafail A, Shaheen S, Baik A, Zaid BA, Alharbi A, Alahmadi O. 2023. Assessment of pulp stones among western Saudi populations: A Cross-Sectional study. Cureus 15(9): e46056. https://doi.org/10.7759/cureus.46056en
dc.referencesMitręga J, Dreher W. 1968. Calcifying changes in the pulp. Czas Stomatolo 21(11):1325–31.en
dc.referencesMurray MM. 1936. The Chemical composition of teeth. IV. The calcium, magnesium and phosphorus contents of the teeth of different animals. A brief consideration of the mechanism of calcification. London: University of London.en
dc.referencesNedoklan S, Knezovic Z, Knezovic N, Sutlovic D. 2021. Nutritional and mineral content in human teeth through the centuries. Arch Oral Biol 124:105075. https://doi.org/10.1016/j.archoralbio.2021.105075en
dc.referencesNicklisch N, Schierz O, Enzmann F, Knipper C, Held P, Vach W, Dresely V, Meller H, Friederich S, Alt KW. 2021. Dental pulp calcifications in prehistoric and historical skeletal remains. Ann Anat 235. https://doi.org/10.1016/j.aanat.2021.151675en
dc.referencesOzkalayci N, Zengin AZ, Turk SE, Sumer AP, Bulucu B, Kirtiloglu T. 2011. Multiple pulp stones: a case report. Eur J Dent 5:210–14.en
dc.referencesPach J, Regulski P, Tomczyk J, Reymond J, Osipowicz K, Strużycka I. 2023. Prevalence of taurodontism in contemporary and historical populations from Radom: a biometric analysis of radiological data. J Clin Med. https://doi.org/10.3390/jcm12185988en
dc.referencesPalatyńska-Ulatowska A, Fernandes MC, Pietrzycka K, Koprowicz A, Klimek L, Souza RA, Pradebon M, de Figueiredo JAP. 2021. The pulp stones: morphological analysis in scanning electron microscopy and spectroscopic chemical quantification. Medicina (B Aires) 58(1). https://doi.org/10.3390/medicina58010005en
dc.referencesPerkowski K, Marczyńska-Stolarek M, Regulski P, Tomczyk J. 2024. Characteristics of dental malocclusion in a 18th/19th century population from Radom (Poland). Int J Paleopathol 47:21–6. https://doi.org/10.1016/j.ijpp.2024.09.001en
dc.referencesRaj AC, Jayaprasad A, Manasa A, Darshan DD, Seema M, Ambili A. 2012. Correlation of pulp stone prevalence with dietary habits – A pilot study. Health Sci 1(3):JS003C.en
dc.referencesRobinson C, Kirkham J, Brookes SJ, Shore R. 1995. Chemistry of mature enamel. Chapter 8. In: C Robinson, J Kirkham, editors. Dental Enamel – Formation to Destruction. Boca Raton CRC Press. 167–88.en
dc.referencesRoomans GM. 1988. Quantitative X-ray microanalysis of biological specimens. J Electron Micr Tech 9:19–43. https://doi.org/10.1002/jemt.1060090104en
dc.referencesSakoolnamarka R, Burrow MF, Swain M, Tyas MJ. 2005. Microhardness and Ca:P ratio of carious and CarisolvTM treated caries-affected dentine using an ultra-micro- indentation system and energy dispersive analysis of x-rays – A pilot study. Aust Dent J 50(4):246–50. https://doi.org/10.1111/j.1834-7819.2005.tb00368.xen
dc.referencesSarna-Boś K, Boguta P, Skic K, Wiącek D, Maksymiuk P, Sobieszczański J, Chałas R. 2022. Physicochemical properties and surface characteristics of ground human teeth. Molecules 27:5852. https://doi.org/10.3390/molecules27185852en
dc.referencesŞener S, Cobankara FK, Akgunlu F. 2009. Calcifications of the pulp chamber: prevalence and implicated factors. Clin Oral Invest 13:209–15. https://doi.org/10.1007/s00784-008-0212-xen
dc.referencesSisman Y, Aktan AM, Tarim-Ertas E, Çiftçi ME, Şekerci AE. 2012. The prevalence of pulp stones on a Turkish population. A radiographic survey. Med Oral Patol Oral 17:212– 17. https://doi.org/10.4317/medoral.17400en
dc.referencesStipisic A, Versic-Bratincevic M, Knezovic Z, Sutlovic D. 2014. Metal content in medieval skeletal remains from Southern Croatia. J Archaeol Sci 46:393–400. https://doi.org/10.1016/j.jas.2014.03.032en
dc.referencesTomczyk J, Komarnitki J, Zalewska M, Wiśniewska E, Szopiński K, Olczak-Kowalczyk D. 2014. The Prevalence of pulp stones in historical populations from the Middle Euphrates Valley (Syria). Am J Phys Anthropol 153:103–15. https://doi.org/10.1002/ajpa.22414en
dc.referencesTomczyk J, Turska-Szybka A, Zalewska M, Olczak-Kowalczyk D. 2017. Pulp stones prevalence in a historical sample from Radom, Poland (AD 1791–1811). Int J Osteoarchaeol 27:563–72. https://doi.org/10.1002/oa.2579en
dc.referencesTurkal M, Tan E, Uzgur R, Hamidi MM, Çolak H, Uzgur Z. 2013. Incidence and distribution of pulp stones found in radiographic dental examination of adult Turkish dental patients. Ann Med Health Sci Res 3:572–76. https://doi.org/10.4103/2141-9248.122115en
dc.contributor.authorEmailTomczyk, Jacek - j.tomczyk@uksw.edu.pl
dc.contributor.authorEmailRegulski, Piotr - pregulski@interia.pl
dc.contributor.authorEmailGóralczyk, Katarzyna - k.goralczyk@uksw.edu.pl
dc.contributor.authorEmailTylko, Grzegorz - grzegorz.tylko@uj.edu.pl
dc.identifier.doi10.18778/1898-6773.88.2.02
dc.relation.volume88


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0