Show simple item record

dc.contributor.authorLyon, Tim S.
dc.contributor.authorCiabattoni, Agata
dc.contributor.authorGalmiche, Didier
dc.contributor.authorGirlando, Marianna
dc.contributor.authorLarchey-Wendling, Dominique
dc.contributor.authorMéry, Daniel
dc.contributor.authorOlivetti, Nicola
dc.contributor.authorRamanayake, Revantha
dc.date.accessioned2025-11-19T14:27:55Z
dc.date.available2025-11-19T14:27:55Z
dc.date.issued2025-06-06
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/56723
dc.description.abstractThis paper gives a broad account of the various sequent-based proof formalisms in the proof-theoretic literature. We consider formalisms for various modal and tense logics, intuitionistic logic, conditional logics, and bunched logics. After providing an overview of the logics and proof formalisms under consideration, we show how these sequent-based formalisms can be placed in a hierarchy in terms of the underlying data structure of the sequents. We then discuss how this hierarchy can be traversed using translations. Translating proofs up this hierarchy is found to be relatively straightforward while translating proofs down the hierarchy is substantially more difficult. Finally, we inspect the prevalent distinction in structural proof theory between ‘internal calculi’ and ‘external calculi.’ We discuss the ambiguities involved in the informal definitions of these categories, and we critically assess the properties that (calculi from) these classes are purported to possess.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;1en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectBunched implicationen
dc.subjectConditional logicen
dc.subjectDisplay calculusen
dc.subjectExternal calculusen
dc.subjectHypersequenten
dc.subjectInternal calculusen
dc.subjectIntuitionistic logicen
dc.subjectLabeled calculusen
dc.subjectModal logicen
dc.subjectNested calculusen
dc.subjectProof theoryen
dc.subjectSequenten
dc.subjectTense logicen
dc.titleInternal and External Calculi: Ordering the Jungle without Being Lost in Translationsen
dc.typeArticle
dc.page.number59-151
dc.contributor.authorAffiliationLyon, Tim S. - Technische Universität Dresdenen
dc.contributor.authorAffiliationCiabattoni, Agata - Vienna University of Technology, Austriaen
dc.contributor.authorAffiliationGalmiche, Didier - Université de Lorraine, CNRS, LORIA, Franceen
dc.contributor.authorAffiliationGirlando, Marianna - University of Amsterdam, Netherlandsen
dc.contributor.authorAffiliationLarchey-Wendling, Dominique - Université de Lorraine, CNRS, LORIA, Franceen
dc.contributor.authorAffiliationMéry, Daniel - Université de Lorraine, CNRS, LORIA, Franceen
dc.contributor.authorAffiliationOlivetti, Nicola - Aix-Marseille University, Franceen
dc.contributor.authorAffiliationRamanayake, Revantha - University of Groningen, Netherlandsen
dc.identifier.eissn2449-836X
dc.referencesA. Avron, A Constructive Analysis of RM, The Journal of Symbolic Logic, vol. 52(4) (1987), pp. 939–951, DOI: https://doi.org/10.2307/2273828en
dc.referencesA. Avron, The Method of Hypersequents in the Proof Theory of Propositional Non-Classical Logics, [in:] W. Hodges, M. Hyland, C. Steinhorn, J. Truss (eds.), Logic: From Foundations to Applications: European Logic Colloquium, Clarendon Press, USA (1996), p. 1–32.en
dc.referencesS. Baratella, A. Masini, An approach to infinitary temporal proof theory,Archive for Mathematical Logic, vol. 43(8) (2004), pp. 965–990, DOI: https://doi.org/10.1007/s00153-004-0237-zen
dc.referencesK. Bednarska, A. Indrzejczak, Hypersequent Calculi for S5: The Methods of Cut Elimination, Logic and Logical Philosophy, vol. 24(3) (2015), pp. 277–311, DOI: https://doi.org/10.12775/LLP.2015.018en
dc.referencesN. D. Belnap, Display logic, Journal of Philosophical Logic, vol. 11(4) (1982), pp. 375–417, DOI: https://doi.org/10.1007/BF00284976en
dc.referencesP. Blackburn, M. de Rijke, Y. Venema, Modal Logic, vol. 53 of Cambridge Tracts in Theoretical Computer Science, Cambridge University Press (2001), DOI: https://doi.org/10.1017/CBO9781107050884en
dc.referencesB. Boretti, Proof Analysis in Temporal Logic, Ph.D. thesis, University of Milan (2008).en
dc.referencesT. Braüner, Hybrid Logic and its Proof-Theory, vol. 37 of Applied Logic Series, Springer Dordrecht (2011), DOI: https://doi.org/10.1007/978-94-007-0002-4en
dc.referencesJ. Brotherston, Bunched Logics Displayed, Studia Logica, vol. 100(6) (2012), p. 1223–1254, DOI: https://doi.org/10.1007/s11225-012-9449-0en
dc.referencesJ. Brotherston, R. Goré, Craig Interpolation in Displayable Logics, [in:] K. Brünnler, G. Metcalfe (eds.), Automated Reasoning with Analytic Tableaux and Related Methods, Springer, Berlin-Heidelberg (2011), pp. 88–103, DOI: https://doi.org/10.1007/978-3-642-22119-4_9en
dc.referencesK. Brünnler, Deep sequent systems for modal logic, Archive of Mathematical Logic, vol. 48(6) (2009), pp. 551–577, DOI: https://doi.org/10.1007/s00153-009-0137-3en
dc.referencesL. Buisman, R. Goré, A Cut-Free Sequent Calculus for Bi-intuitionistic Logic, [in:] N. Olivetti (ed.), Automated Reasoning with Analytic Tableaux and Related Methods, Springer, Berlin-Heidelberg (2007), pp. 90–106, DOI: https://doi.org/10.1007/978-3-540-73099-6_9en
dc.referencesR. A. Bull, Cut elimination for propositional dynamic logic without *,Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 38(2) (1992), pp. 85–100, DOI: https://doi.org/10.1002/malq.19920380107en
dc.referencesS. R. Buss, An introduction to proof theory, Handbook of Proof Theory, vol. 137 (1998), pp. 1–78.en
dc.referencesC. Castellini, A. Smaill, A systematic presentation of quantified modal logics, Logic Journal of the IGPL, vol. 10(6) (2002), pp. 571–599, DOI: https://doi.org/10.1093/jigpal/10.6.571en
dc.referencesM. A. Castilho, L. F. del Cerro, O. Gasquet, A. Herzig, Modal tableaux with propagation rules and structural rules, Fundamenta Informaticae, vol. 32(3, 4) (1997), pp. 281–297, DOI: https://doi.org/10.3233/FI-1997-323404en
dc.referencesK. Chaudhuri, N. Guenot, L. Strassburger, The Focused Calculus of Structures, [in:] M. Bezem (ed.), 20th EACSL Annual Conference on Computer Science Logic, vol. 12 of Leibniz International Proceedings in Informatics (LIPIcs), Bergen, Norway (2011), pp. 159–173, DOI: https://doi.org/10.4230/LIPIcs.CSL.2011.159en
dc.referencesA. Ciabattoni, N. Galatos, K. Terui, From Axioms to Analytic Rules in Nonclassical Logics, [in:] 2008 23rd Annual IEEE Symposium on Logic in Computer Science (2008), pp. 229–240, DOI: https://doi.org/10.1109/LICS.2008.39en
dc.referencesA. Ciabattoni, T. S. Lyon, R. Ramanayake, From Display to Labelled Proofs for Tense Logics, [in:] S. N. Artëmov, A. Nerode (eds.), Logical Foundations of Computer Science – International Symposium, LFCS 2018, vol. 10703 of Lecture Notes in Computer Science, Springer (2018), pp. 120–139, DOI: https://doi.org/10.1007/978-3-319-72056-2_8en
dc.referencesA. Ciabattoni, T. S. Lyon, R. Ramanayake, A. Tiu, Display to Labeled Proofs and Back Again for Tense Logics, ACM Transactions in Computational Logic, vol. 22(3) (2021), DOI: https://doi.org/10.1145/3460492en
dc.referencesA. Ciabattoni, P. Maffezioli, L. Spendier, Hypersequent and Labelled Calculi for Intermediate Logics, [in:] D. Galmiche, D. Larchey-Wendling (eds.), Automated Reasoning with Analytic Tableaux and Related Methods, vol. 8123 of Lecture Notes in Computer Science, Springer, Berlin-Heidelberg (2013), pp. 81–96, DOI: https://doi.org/10.1007/978-3-642-40537-2_9en
dc.referencesA. Ciabattoni, R. Ramanayake, Power and Limits of Structural Display Rules, ACM Transactions on Computational Logic, vol. 17(3) (2016), DOI: https://doi.org/10.1145/2874775en
dc.referencesA. Ciabattoni, R. Ramanayake, Bunched Hypersequent Calculi for Distributive Substructural Logics, [in:] T. Eiter, D. Sands (eds.), LPAR-21, 21st International Conference on Logic for Programming, Artificial Intelligence and Reasoning, Maun, Botswana, May 7–12, 2017, vol. 46 of EPiC Series in Computing, EasyChair (2017), pp. 417–434, DOI: https://doi.org/10.29007/ngp3en
dc.referencesA. Ciabattoni, L. Straßburger, K. Terui, Expanding the Realm of Systematic Proof Theory, [in:] E. Grädel, R. Kahle (eds.), Computer Science Logic, 23rd international Workshop, CSL 2009, 18th Annual Conference of the EACSL, Coimbra, Portugal, September 7–11, 2009, vol. 5771 of Lecture Notes in Computer Science, Springer (2009), pp. 163–178, DOI: https://doi.org/10.1007/978-3-642-04027-6_14en
dc.referencesT. Dalmonte, B. Lellmann, N. Olivetti, E. Pimentel, Hypersequent calculi for non-normal modal and deontic logics: countermodels and optimal complexity, Journal of Logic and Computation, vol. 31(1) (2020), pp. 67–111, DOI: https://doi.org/10.1093/logcom/exaa072en
dc.referencesK. Došen, Sequent-systems and groupoid models. I, Studia Logica, vol. 47(4) (1988), pp. 353–385, DOI: https://doi.org/10.1007/BF00671566en
dc.referencesM. Dunn, A ’Gentzen’ system for positive relevant implication, The Journal of Symbolic Logic, vol. 38 (1974), pp. 356–357.en
dc.referencesR. Dyckhoff, Contraction-free sequent calculi for intuitionistic logic, The Journal of Symbolic Logic, vol. 57(3) (1992), pp. 795–807, DOI: https://doi.org/10.2307/2275431en
dc.referencesR. Dyckhoff, Intuitionistic decision procedures since Gentzen, Advances in Proof Theory, (2016), pp. 245–267.en
dc.referencesR. Dyckhoff, S. Negri, Proof analysis in intermediate logics, Archive for Mathematical Logic, vol. 51(1–2) (2012), pp. 71–92, DOI: https://doi.org/10.1007/s00153-011-0254-7en
dc.referencesM. Fitting, Tableau methods of proof for modal logics, Notre Dame Journal of Formal Logic, vol. 13(2) (1972), pp. 237–247.en
dc.referencesM. Fitting, Nested Sequents for Intuitionistic Logics, Notre Dame Journal of Formal Logic, vol. 55(1) (2014), pp. 41–61, DOI: https://doi.org/10.1215/00294527-2377869en
dc.referencesM. Fitting, R. Kuznets, Modal interpolation via nested sequents, Annals of Pure and Applied Logic, vol. 166(3) (2015), pp. 274–305, DOI: https://doi.org/10.1016/j.apal.2014.11.002en
dc.referencesD. Galmiche, M. Marti, D. Méry, Relating Labelled and Label-Free Bunched Calculi in BI Logic, [in:] 28th International Conference on Automated Reasoning with Analytic Tableaux and Related Methods, TABLEAUX 2019, vol. 11714, Springer, Londres, United Kingdom (2019), pp. 130–146, DOI: https://doi.org/10.1007/978-3-030-29026-9_8en
dc.referencesD. Galmiche, D. Méry, D. Pym, The Semantics of BI and Resource Tableaux, Mathematical Structures in Computer Science, vol. 15(6) (2005), pp. 1033–1088, DOI: https://doi.org/10.1017/S0960129505004858en
dc.referencesD. Galmiche, Y. Salhi, Tree-sequent calculi and decision procedures for intuitionistic modal logics, Journal of Logic and Computation, vol. 28(5) (2018), pp. 967–989, DOI: https://doi.org/https://doi.org/10.1093/logcom/exv039en
dc.referencesG. Gentzen, Untersuchungen über das logische Schließen. I, Mathematische zeitschrift, vol. 39(1) (1935), pp. 176–210.en
dc.referencesG. Gentzen, Untersuchungen über das logische Schließen. II, Mathematische Zeitschrift, vol. 39(1) (1935), pp. 405–431.en
dc.referencesJ.-Y. Girard, Linear logic, Theoretical Computer Science, vol. 50(1) (1987), pp. 1–101, DOI: https://doi.org/10.1016/0304-3975(87)90045-4en
dc.referencesM. Girlando, B. Lellmann, N. Olivetti, G. L. Pozzato, Standard Sequent Calculi for Lewis’ Logics of Counterfactuals, [in:] L. Michael, A. C. Kakas (eds.), Logics in Artificial Intelligence – 15th European Conference, JELIA, vol. 10021 of Lecture Notes in Computer Science (2016), pp. 272–287, DOI: https://doi.org/10.1007/978-3-319-48758-8_18en
dc.referencesM. Girlando, N. Olivetti, S. Negri, Counterfactual Logic: Labelled and Internal Calculi, Two Sides of the Same Coin?, [in:] G. Bezhanishvili, G. D’Agostino, G. Metcalfe, T. Studer (eds.), Advances in Modal Logic 12, College Publications (2018), pp. 291–310, URL: http://www.aiml.net/volumes/volume12/Girlando-Olivetti-Negri.pdfen
dc.referencesR. Goré, B. Lellmann, Syntactic Cut-Elimination and Backward Proof-Search for Tense Logic via Linear Nested Sequents, [in:] S. Cerrito, A. Popescu (eds.), Automated Reasoning with Analytic Tableaux and Related Methods, Springer International Publishing, Cham (2019), pp. 185–202, DOI: https://doi.org/10.1007/978-3-030-29026-9_11en
dc.referencesR. Goré, L. Postniece, A. Tiu, Cut-elimination and proof-search for bi-intuitionistic logic using nested sequents, [in:] C. Areces, R. Goldblatt (eds.), Advances in Modal Logic 7, College Publications (2008), pp. 43–66, URL: http://www.aiml.net/volumes/volume7/Gore-Postniece-Tiu.pdfen
dc.referencesR. Goré, L. Postniece, A. Tiu, On the Correspondence between Display Postulates and Deep Inference in Nested Sequent Calculi for Tense Logics,Logical Methods in Computer Science, vol. 7(2) (2011), DOI: https://doi.org/10.2168/LMCS-7(2:8)2011.en
dc.referencesR. Goré, Substructural logics on display, Logic Journal of the IGPL, vol. 6(3) (1998), pp. 451–504, DOI: https://doi.org/10.1093/jigpal/6.3.451en
dc.referencesG. Greco, M. Ma, A. Palmigiano, A. Tzimoulis, Z. Zhao, Unified correspondence as a proof-theoretic tool, Journal of Logic and Computation, vol. 28(7) (2018), pp. 1367–1442, DOI: https://doi.org/10.1093/logcom/exw022en
dc.referencesA. Guglielmi, A System of Interaction and Structure, ACM Transactions on Computational Logic, vol. 8(1) (2007), p. 1–es, DOI: https://doi.org/10.1145/1182613.1182614en
dc.referencesR. Hein, Geometric theories and proof theory of modal logic, Master’s thesis, Technische Universität Dresden (2005).en
dc.referencesA. Heyting, Die formalen Regeln der intuitionistischen Logik, Sitzungsbericht PreuBische Akademie der Wissenschaften Berlin, physikalisch-mathematische Klasse II, (1930), pp. 42–56.en
dc.referencesI. Horrocks, U. Sattler, Decidability of SHIQ with complex role inclusion axioms, Artificial Intelligence, vol. 160(1–2) (2004), pp. 79–104, DOI: https://doi.org/10.1016/j.artint.2004.06.002en
dc.referencesA. Indrzejczak, Linear Time in Hypersequent Framework, The Bulletin of Symbolic Logic, vol. 22(1) (2016), pp. 121–144, DOI: https://doi.org/10.1017/bsl.2016.2en
dc.referencesA. Indrzejczak, Cut elimination in Hypersequent Calculus for some Logics of Linear Time, The Review of Symbolic Logic, vol. 12(4) (2019), pp. 806–822, DOI: https://doi.org/10.1017/S1755020319000352en
dc.referencesR. Ishigaki, K. Kikuchi, Tree-Sequent Methods for Subintuitionistic Predicate Logics, [in:] N. Olivetti (ed.), Automated Reasoning with Analytic Tableaux and Related Methods, vol. 4548 of Lecture Notes in Computer Science, Springer, Berlin-Heidelberg (2007), pp. 149–164.en
dc.referencesS. Kanger, Provability in logic, Almqvist & Wiksell (1957).en
dc.referencesR. Kashima, Cut-free sequent calculi for some tense logics, Studia Logica, vol. 53(1) (1994), pp. 119–135, DOI: https://doi.org/10.1007/978-3-319-10061-6_4en
dc.referencesM. Kracht, Power and Weakness of the Modal Display Calculus, [in:] H. Wansing (ed.), Proof Theory of Modal Logic, Springer Netherlands, Dordrecht (1996), pp. 93–121, DOI: https://doi.org/10.1007/978-94-017-2798-3_7en
dc.referencesS. A. Kripke, Semantical Analysis of Intuitionistic Logic I, [in:] J. Crossley, M. Dummett (eds.), Formal Systems and Recursive Functions, vol. 40 of Studies in Logic and the Foundations of Mathematics, Elsevier (1965), pp. 92–130, DOI: https://doi.org/10.1016/S0049-237X(08)71685-9en
dc.referencesH. Kurokawa, Hypersequent Calculi for Modal Logics Extending S4, New Frontiers in Artificial Intelligence, (2013), pp. 51–68.en
dc.referencesH. Kushida, M. Okada, A proof-theoretic study of the correspondence of classical logic and modal logic, Journal of Symbolic Logic, vol. 68(4) (2003), pp. 1403–1414, DOI: https://doi.org/10.2178/jsl/1067620195en
dc.referencesR. Kuznets, Proving Craig and Lyndon Interpolation Using Labelled Sequent Calculi, [in:] L. Michael, A. Kakas (eds.), Logics in Artificial Intelligence, vol. 10021 of Lecture Notes in Computer Science, Springer International Publishing, Cham (2016), pp. 320–335, DOI: https://doi.org/10.1007/978-3-319-48758-8_21en
dc.referencesR. Kuznets, B. Lellmann, Interpolation for Intermediate Logics via Hyper- and Linear Nested Sequents, [in:] G. Bezhanishvili, G. D’Agostino, G. Metcalfe, T. Studer (eds.), Advances in Modal Logic 12, College Publications (2018), pp. 473–492, URL: http://www.aiml.net/volumes/volume12/Kuznets-Lellmann.pdfen
dc.referencesO. Lahav, From Frame Properties to Hypersequent Rules in Modal Logics, [in:] 28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, New Orleans, LA, USA, June 25–28, 2013(2013), pp. 408–417, DOI: https://doi.org/10.1109/LICS.2013.47en
dc.referencesD. Leivant, Proof theoretic methodology for propositional dynamic logic, [in:] J. Díaz, I. Ramos (eds.), Formalization of Programming Concepts, Springer, Berlin-Heidelberg (1981), pp. 356–373, DOI: https://doi.org/10.1007/3-540-10699-5_111en
dc.referencesB. Lellmann, Linear Nested Sequents, 2-Sequents and Hypersequents, [in:] H. De Nivelle (ed.), Automated Reasoning with Analytic Tableaux and Related Methods, vol. 9323 of Lecture Notes in Computer Science, Springer International Publishing, Cham (2015), pp. 135–150, DOI: https://doi.org/10.1007/978-3-319-24312-2_10en
dc.referencesB. Lellmann, Hypersequent rules with restricted contexts for propositional modal logics, Theoretical Computer Science, vol. 656 (2016), pp. 76–105, DOI: https://doi.org/https://doi.org/10.1016/j.tcs.2016.10.004en
dc.referencesB. Lellmann, D. Pattinson, Correspondence between modal Hilbert axioms and sequent rules with an application to S5, [in:] Automated Reasoning with Analytic Tableaux and Related Methods: 22nd International Conference, TABLEAUX 2013, Nancy, France, September 16–19, 2013, Springer (2013), pp. 219–233, DOI: https://doi.org/10.1007/978-3-642-40537-2_19en
dc.referencesB. Lellmann, E. Pimentel, Proof Search in Nested Sequent Calculi, [in:] M. Davis, A. Fehnker, A. McIver, A. Voronkov (eds.), Logic for Programming, Artificial Intelligence, and Reasoning – 20th International Conference, LPAR-20, vol. 9450 of Lecture Notes in Computer Science, Springer-Verlag, Berlin-Heidelberg (2015), p. 558–574, DOI: https://doi.org/10.1007/978-3-662-48899-7_39en
dc.referencesI. Lewis, A survey of symbolic logic, University of California Press (1918).en
dc.referencesD. Lewis, Counterfactuals, Blackwell, Hobokin (1973).en
dc.referencesT. S. Lyon, On the Correspondence between Nested Calculi and Semantic Systems for Intuitionistic Logics, Journal of Logic and Computation, vol. 31(1) (2020), pp. 213–265, DOI: https://doi.org/10.1093/logcom/exaa078en
dc.referencesT. S. Lyon, Syntactic Cut-Elimination for Intuitionistic Fuzzy Logic via Linear Nested Sequents, [in:] S. N. Artëmov, A. Nerode (eds.), Logical Foundations of Computer Science – International Symposium, LFCS 2020, Deerfield Beach, FL, USA, January 4–7, 2020, vol. 11972 of Lecture Notes in Computer Science, Springer (2020), pp. 156–176, DOI: https://doi.org/10.1007/978-3-030-36755-8_11en
dc.referencesT. S. Lyon, Nested Sequents for Intuitionistic Modal Logics via Structural Refinement, [in:] A. Das, S. Negri (eds.), Automated Reasoning with Analytic Tableaux and Related Methods, Springer International Publishing, Cham (2021), pp. 409–427, DOI: https://doi.org/https://doi.org/10.1007/978-3-030-86059-2_24en
dc.referencesT. S. Lyon, Refining Labelled Systems for Modal and Constructive Logics with Applications, Ph.D. thesis, Technische Universität Wien (2021).en
dc.referencesT. S. Lyon, Nested Sequents for Intermediate Logics: The Case of Gödel-Dummett Logics, Journal of Applied Non-Classical Logics, vol. 33(2) (2023), pp. 121–164, DOI: https://doi.org/10.1080/11663081.2023.2233346en
dc.referencesT. S. Lyon, Realizing the Maximal Analytic Display Fragment of Labeled Sequent Calculi for Tense Logics, Found on arXiv, (2024), URL: https://arxiv.org/abs/2406.19882en
dc.referencesT. S. Lyon, Unifying Sequent Systems for Gödel-Löb Provability Logic via Syntactic Transformations, [in:] J. Endrullis, S. Schmitz (eds.),33rd EACSL Annual Conference on Computer Science Logic (CSL 2025), vol. 326 of Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2025), pp. 42:1–42:23, DOI: https://doi.org/10.4230/LIPIcs.CSL.2025.42en
dc.referencesT. S. Lyon, L. Gómez Álvarez, Automating Reasoning with Standpoint Logic via Nested Sequents, [in:] Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning (2022), pp. 257–266, DOI: https://doi.org/10.24963/kr.2022/26en
dc.referencesT. S. Lyon, E. Orlandelli, Nested Sequents for Quantified Modal Logics, [in:] R. Ramanayake, J. Urban (eds.), Automated Reasoning with Analytic Tableaux and Related Methods, Springer Nature Switzerland, Cham (2023), pp. 449–467, DOI: https://doi.org/10.1007/978-3-031-43513-3_24en
dc.referencesT. S. Lyon, P. Ostropolski-Nalewaja, Foundations for an Abstract Proof Theory in the Context of Horn Rules, Found on arXiv, (2024), URL: https://arxiv.org/abs/2304.05697en
dc.referencesT. S. Lyon, I. Shillito, A. Tiu, Taking Bi-Intuitionistic Logic First-Order: A Proof-Theoretic Investigation via Polytree Sequents, [in:] J. Endrullis, S. Schmitz (eds.), 33rd EACSL Annual Conference on Computer Science Logic (CSL 2025), vol. 326 of Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2025), pp. 41:1–41:23, DOI: https://doi.org/10.4230/LIPIcs.CSL.2025.41en
dc.referencesT. S. Lyon, A. Tiu, R. Goré, R. Clouston, Syntactic Interpolation for Tense Logics and Bi-Intuitionistic Logic via Nested Sequents, [in:] M. Fernández, A. Muscholl (eds.), 28th EACSL Annual Conference on Computer Science Logic, CSL 2020, vol. 152 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020), pp. 28:1–28:16, DOI: https://doi.org/10.4230/LIPIcs.CSL.2020.28en
dc.referencesT. S. Lyon, K. van Berkel, Automating Agential Reasoning: Proof-Calculi and Syntactic Decidability for STIT Logics, [in:] M. Baldoni, M. Dastani, B. Liao, Y. Sakurai, R. Zalila Wenkstern (eds.), PRIMA 2019: Principles and Practice of Multi-Agent Systems - 22nd International Conference, vol. 11873 of Lecture Notes in Computer Science, Springer International Publishing, Cham (2019), pp. 202–218.en
dc.referencesT. S. Lyon, K. van Berkel, Proof Theory and Decision Procedures for Deontic STIT Logics, Journal of Artificial Intelligence Research, vol. 81 (2024), pp. 837–876, DOI: https://doi.org/https://doi.org/10.48550/arXiv.2402.03148en
dc.referencesS. Maehara, Eine Darstellung der Intuitionistischen Logik in der Klassischen, Nagoya Mathematical Journal, vol. 7 (1954), p. 45–64, DOI: https://doi.org/10.1017/S0027763000018055en
dc.referencesS. Maehara, On the interpolation theorem of Craig, Sûgaku, vol. 12(4) (1960), pp. 235–237.en
dc.referencesS. Marin, M. Morales, L. Straßburger, A fully labelled proof system for intuitionistic modal logics, Journal of Logic and Computation, vol. 31(3) (2021), pp. 998–1022, DOI: https://doi.org/10.1093/logcom/exab020en
dc.referencesA. Masini, 2-sequent calculus: A proof theory of modalities, Annals of Pure and Applied Logic, vol. 58(3) (1992), pp. 229–246, DOI: https://doi.org/10.1016/0168-0072(92)90029-Yen
dc.referencesA. Masini, 2-sequent calculus: Intuitionism and natural deduction, Journal of Logic and Computation, vol. 3(5) (1993), pp. 533–562, DOI: https://doi.org/10.1093/logcom/3.5.533en
dc.referencesL. McMillan, Interpolation and Model Checking, [in:] E. M. Clarke, T. A. Henzinger, H. Veith, R. Bloem (eds.), Handbook of Model Checking, Springer International Publishing, Cham (2018), pp. 421–446, DOI: https://doi.org/10.1007/978-3-319-10575-8_14en
dc.referencesG. Metcalfe, N. Olivetti, D. M. Gabbay, Sequent and hypersequent calculi for abelian and Łukasiewicz logics, ACM Transactions on Computational Logic, vol. 6(3) (2005), pp. 578–613, DOI: https://doi.org/10.1145/1071596.1071600en
dc.referencesE. Mints, Some calculi of modal logic, Trudy Matematicheskogo Instituta imeni VA Steklova, vol. 98 (1968), pp. 88–111.en
dc.referencesE. Mints, Studies in constructive mathematics and mathematical logic. Part V, Nauka, Leningrad. Otdel, chap. Cut-elimination theorem for relevant logics (in Russian) (1972), pp. 90–97.en
dc.referencesG. E. Mints, Indexed systems of sequents and cut-elimination, Journal of Philosophical Logic, vol. 26(6) (1997), pp. 671–696, DOI: https://doi.org/10.1023/A:1017948105274en
dc.referencesS. Negri, Proof analysis in modal logic, Journal of Philosophical Logic, vol. 34(5–6) (2005), p. 507, DOI: https://doi.org/10.1007/s10992-005-2267-3en
dc.referencesP. W. O’Hearn, D. Pym, The Logic of Bunched Implications, Bulletin of Symbolic Logic, vol. 5(2) (1999), pp. 215–244, DOI: https://doi.org/https://doi.org/10.2307/421090en
dc.referencesE. Pimentel, R. Ramanayake, B. Lellmann, Sequentialising Nested Systems, [in:] S. Cerrito, A. Popescu (eds.), Automated Reasoning with Analytic Tableaux and Related Methods, vol. 11714 of Lecture Notes in Computer Science, Springer International Publishing, Cham (2019), pp. 147–165, DOI: https://doi.org/10.1007/978-3-030-29026-9_9en
dc.referencesF. Poggiolesi, A Cut-free Simple Sequent calculus for Modal Logic S5,The Review of Symbolic Logic, vol. 1(1) (2008), p. 3–15, DOI: https://doi.org/10.1017/S1755020308080040en
dc.referencesF. Poggiolesi, The Method of Tree-Hypersequents for Modal Propositional Logic, [in:] D. Makinson, J. Malinowski, H. Wansing (eds.), Towards Mathematical Philosophy, vol. 28 of Trends in logic, Springer (2009), pp. 31–51, DOI: https://doi.org/10.1007/978-1-4020-9084-4_3en
dc.referencesF. Poggiolesi, A Tree-Hypersequent Calculus for the Modal Logic of Provability, Springer Netherlands, Dordrecht (2011), pp. 187–201, DOI: https://doi.org/10.1007/978-90-481-9670-8_10en
dc.referencesF. Poggiolesi, G. Restall, Interpreting and Applying Proof Theories for Modal Logic, Palgrave Macmillan UK, London (2012), pp. 39–62, DOI: https://doi.org/10.1057/9781137003720_4en
dc.referencesE. Pottinger, Uniform, cut-free formulations of T, S4 and S5, Journal of Symbolic Logic, vol. 48(3) (1983), p. 900.en
dc.referencesN. Prior, Time and Modality, Oxford University Press (1957).en
dc.referencesD. Pym, The Semantics and Proof Theory of the Logic of Bunched Implications, vol. 26 of Applied Logic Series, Kluwer Academic Publishers (2002), DOI: https://doi.org/10.1007/978-94-017-0091-7en
dc.referencesS. Read, Semantic Pollution and Syntactic Purity, The Review of Symbolic Logic, vol. 8(4) (2015), DOI: https://doi.org/10.1017/S1755020315000210en
dc.referencesG. Restall, Proofnets for S5: sequents and circuits for modal logic, [in:]Logic Colloquium 2005, Lecture Notes in Logic, vol. 28, Cambridge University Press (2007), pp. 151–172.en
dc.referencesK. Simpson, The proof theory and semantics of intuitionistic modal logic, Ph.D. thesis, University of Edinburgh. College of Science and Engineering. School of Informatics (1994).en
dc.referencesK. Slaney, Minlog: A Minimal Logic Theorem Prover, [in:] W. McCune (ed.), Automated Deduction – CADE-14, 14th International Conference on Automated Deduction, Townsville, North Queensland, Australia, vol. 1249 of Lecture Notes in Computer Science, Springer (1997), pp. 268–271, DOI: https://doi.org/10.1007/3-540-63104-6_27en
dc.referencesL. Straßburger, Cut Elimination in Nested Sequents for Intuitionistic Modal Logics, [in:] F. Pfenning (ed.), Foundations of Software Science and Computation Structures, vol. 7794 of Lecture Notes in Computer Science, Springer, Berlin-Heidelberg (2013), pp. 209–224, DOI: https://doi.org/10.1007/978-3-642-37075-5_14en
dc.referencesA. Tiu, E. Ianovski, R. Goré, Grammar Logics in Nested Sequent Calculus: Proof Theory and Decision Procedures, [in:] T. Bolander, T. Braüner, S. Ghilardi, L. S. Moss (eds.), Advances in Modal Logic 9, College Publications (2012), pp. 516–537, URL: http://www.aiml.net/volumes/volume9/Tiu-Ianovski-Gore.pdfen
dc.referencesK. van Berkel, T. S. Lyon, Cut-Free Calculi and Relational Semantics for Temporal STIT Logics, [in:] F. Calimeri, N. Leone, M. Manna (eds.), Logics in Artificial Intelligence, Springer International Publishing, Cham (2019), pp. 803–819, DOI: https://doi.org/10.1007/978-3-030-19570-0_52en
dc.referencesK. van Berkel, T. S. Lyon, The Varieties of Ought-implies-Can and Deontic STIT Logic, [in:] F. Liu, A. Marra, P. Portner, F. V. D. Putte (eds.), Deontic Logic and Normative Systems: 15th International Conference (DEON2020/2021), College Publications (2021), URL: https://www.collegepublications.co.uk/DEON/Van%20Berkel%20&%20Lyon_DEON2020.pdfen
dc.referencesL. Viganò, Labelled Non-Classical Logics, Springer Science & Business Media (2000), DOI: https://doi.org/10.1007/978-1-4757-3208-5en
dc.referencesH. Wansing, Sequent calculi for normal modal propositional logics, Journal of Logic and Computation, vol. 4(2) (1994), pp. 125–142, DOI: https://doi.org/10.1093/logcom/4.2.125en
dc.referencesH. Wansing, Sequent Systems for Modal Logics, [in:] D. M. Gabbay, F. Guenthner (eds.), Handbook of Philosophical Logic: Volume 8, Springer Netherlands, Dordrecht (2002), pp. 61–145, DOI: https://doi.org/10.1007/978-94-010-0387-2_2en
dc.referencesF. Wolter, On Logics with Coimplication, Journal of Philosophical Logic, vol. 27(4) (1998), pp. 353–387, DOI: https://doi.org/10.1023/A:1004218110879en
dc.contributor.authorEmailLyon, Tim S. - timothy_stephen.lyon@tu-dresden.de
dc.contributor.authorEmailCiabattoni, Agata - agata@logic.at
dc.contributor.authorEmailGalmiche, Didier - didier.galmiche@loria.fr
dc.contributor.authorEmailGirlando, Marianna - m.girlando@uva.nl
dc.contributor.authorEmailLarchey-Wendling, Dominique - dominique.larchey-wendling@loria.fr
dc.contributor.authorEmailMéry, Daniel - daniel.mery@loria.fr
dc.contributor.authorEmailOlivetti, Nicola - nicola.olivetti@univ-amu.fr
dc.contributor.authorEmailRamanayake, Revantha - d.r.s.ramanayake@rug.nl
dc.identifier.doi10.18778/0138-0680.2025.02
dc.relation.volume54


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0