| dc.contributor.author | Lyon, Tim S. | |
| dc.contributor.author | Ciabattoni, Agata | |
| dc.contributor.author | Galmiche, Didier | |
| dc.contributor.author | Girlando, Marianna | |
| dc.contributor.author | Larchey-Wendling, Dominique | |
| dc.contributor.author | Méry, Daniel | |
| dc.contributor.author | Olivetti, Nicola | |
| dc.contributor.author | Ramanayake, Revantha | |
| dc.date.accessioned | 2025-11-19T14:27:55Z | |
| dc.date.available | 2025-11-19T14:27:55Z | |
| dc.date.issued | 2025-06-06 | |
| dc.identifier.issn | 0138-0680 | |
| dc.identifier.uri | http://hdl.handle.net/11089/56723 | |
| dc.description.abstract | This paper gives a broad account of the various sequent-based proof formalisms in the proof-theoretic literature. We consider formalisms for various modal and tense logics, intuitionistic logic, conditional logics, and bunched logics. After providing an overview of the logics and proof formalisms under consideration, we show how these sequent-based formalisms can be placed in a hierarchy in terms of the underlying data structure of the sequents. We then discuss how this hierarchy can be traversed using translations. Translating proofs up this hierarchy is found to be relatively straightforward while translating proofs down the hierarchy is substantially more difficult. Finally, we inspect the prevalent distinction in structural proof theory between ‘internal calculi’ and ‘external calculi.’ We discuss the ambiguities involved in the informal definitions of these categories, and we critically assess the properties that (calculi from) these classes are purported to possess. | en |
| dc.language.iso | en | |
| dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
| dc.relation.ispartofseries | Bulletin of the Section of Logic;1 | en |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
| dc.subject | Bunched implication | en |
| dc.subject | Conditional logic | en |
| dc.subject | Display calculus | en |
| dc.subject | External calculus | en |
| dc.subject | Hypersequent | en |
| dc.subject | Internal calculus | en |
| dc.subject | Intuitionistic logic | en |
| dc.subject | Labeled calculus | en |
| dc.subject | Modal logic | en |
| dc.subject | Nested calculus | en |
| dc.subject | Proof theory | en |
| dc.subject | Sequent | en |
| dc.subject | Tense logic | en |
| dc.title | Internal and External Calculi: Ordering the Jungle without Being Lost in Translations | en |
| dc.type | Article | |
| dc.page.number | 59-151 | |
| dc.contributor.authorAffiliation | Lyon, Tim S. - Technische Universität Dresden | en |
| dc.contributor.authorAffiliation | Ciabattoni, Agata - Vienna University of Technology, Austria | en |
| dc.contributor.authorAffiliation | Galmiche, Didier - Université de Lorraine, CNRS, LORIA, France | en |
| dc.contributor.authorAffiliation | Girlando, Marianna - University of Amsterdam, Netherlands | en |
| dc.contributor.authorAffiliation | Larchey-Wendling, Dominique - Université de Lorraine, CNRS, LORIA, France | en |
| dc.contributor.authorAffiliation | Méry, Daniel - Université de Lorraine, CNRS, LORIA, France | en |
| dc.contributor.authorAffiliation | Olivetti, Nicola - Aix-Marseille University, France | en |
| dc.contributor.authorAffiliation | Ramanayake, Revantha - University of Groningen, Netherlands | en |
| dc.identifier.eissn | 2449-836X | |
| dc.references | A. Avron, A Constructive Analysis of RM, The Journal of Symbolic Logic, vol. 52(4) (1987), pp. 939–951, DOI: https://doi.org/10.2307/2273828 | en |
| dc.references | A. Avron, The Method of Hypersequents in the Proof Theory of Propositional Non-Classical Logics, [in:] W. Hodges, M. Hyland, C. Steinhorn, J. Truss (eds.), Logic: From Foundations to Applications: European Logic Colloquium, Clarendon Press, USA (1996), p. 1–32. | en |
| dc.references | S. Baratella, A. Masini, An approach to infinitary temporal proof theory,Archive for Mathematical Logic, vol. 43(8) (2004), pp. 965–990, DOI: https://doi.org/10.1007/s00153-004-0237-z | en |
| dc.references | K. Bednarska, A. Indrzejczak, Hypersequent Calculi for S5: The Methods of Cut Elimination, Logic and Logical Philosophy, vol. 24(3) (2015), pp. 277–311, DOI: https://doi.org/10.12775/LLP.2015.018 | en |
| dc.references | N. D. Belnap, Display logic, Journal of Philosophical Logic, vol. 11(4) (1982), pp. 375–417, DOI: https://doi.org/10.1007/BF00284976 | en |
| dc.references | P. Blackburn, M. de Rijke, Y. Venema, Modal Logic, vol. 53 of Cambridge Tracts in Theoretical Computer Science, Cambridge University Press (2001), DOI: https://doi.org/10.1017/CBO9781107050884 | en |
| dc.references | B. Boretti, Proof Analysis in Temporal Logic, Ph.D. thesis, University of Milan (2008). | en |
| dc.references | T. Braüner, Hybrid Logic and its Proof-Theory, vol. 37 of Applied Logic Series, Springer Dordrecht (2011), DOI: https://doi.org/10.1007/978-94-007-0002-4 | en |
| dc.references | J. Brotherston, Bunched Logics Displayed, Studia Logica, vol. 100(6) (2012), p. 1223–1254, DOI: https://doi.org/10.1007/s11225-012-9449-0 | en |
| dc.references | J. Brotherston, R. Goré, Craig Interpolation in Displayable Logics, [in:] K. Brünnler, G. Metcalfe (eds.), Automated Reasoning with Analytic Tableaux and Related Methods, Springer, Berlin-Heidelberg (2011), pp. 88–103, DOI: https://doi.org/10.1007/978-3-642-22119-4_9 | en |
| dc.references | K. Brünnler, Deep sequent systems for modal logic, Archive of Mathematical Logic, vol. 48(6) (2009), pp. 551–577, DOI: https://doi.org/10.1007/s00153-009-0137-3 | en |
| dc.references | L. Buisman, R. Goré, A Cut-Free Sequent Calculus for Bi-intuitionistic Logic, [in:] N. Olivetti (ed.), Automated Reasoning with Analytic Tableaux and Related Methods, Springer, Berlin-Heidelberg (2007), pp. 90–106, DOI: https://doi.org/10.1007/978-3-540-73099-6_9 | en |
| dc.references | R. A. Bull, Cut elimination for propositional dynamic logic without *,Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 38(2) (1992), pp. 85–100, DOI: https://doi.org/10.1002/malq.19920380107 | en |
| dc.references | S. R. Buss, An introduction to proof theory, Handbook of Proof Theory, vol. 137 (1998), pp. 1–78. | en |
| dc.references | C. Castellini, A. Smaill, A systematic presentation of quantified modal logics, Logic Journal of the IGPL, vol. 10(6) (2002), pp. 571–599, DOI: https://doi.org/10.1093/jigpal/10.6.571 | en |
| dc.references | M. A. Castilho, L. F. del Cerro, O. Gasquet, A. Herzig, Modal tableaux with propagation rules and structural rules, Fundamenta Informaticae, vol. 32(3, 4) (1997), pp. 281–297, DOI: https://doi.org/10.3233/FI-1997-323404 | en |
| dc.references | K. Chaudhuri, N. Guenot, L. Strassburger, The Focused Calculus of Structures, [in:] M. Bezem (ed.), 20th EACSL Annual Conference on Computer Science Logic, vol. 12 of Leibniz International Proceedings in Informatics (LIPIcs), Bergen, Norway (2011), pp. 159–173, DOI: https://doi.org/10.4230/LIPIcs.CSL.2011.159 | en |
| dc.references | A. Ciabattoni, N. Galatos, K. Terui, From Axioms to Analytic Rules in Nonclassical Logics, [in:] 2008 23rd Annual IEEE Symposium on Logic in Computer Science (2008), pp. 229–240, DOI: https://doi.org/10.1109/LICS.2008.39 | en |
| dc.references | A. Ciabattoni, T. S. Lyon, R. Ramanayake, From Display to Labelled Proofs for Tense Logics, [in:] S. N. Artëmov, A. Nerode (eds.), Logical Foundations of Computer Science – International Symposium, LFCS 2018, vol. 10703 of Lecture Notes in Computer Science, Springer (2018), pp. 120–139, DOI: https://doi.org/10.1007/978-3-319-72056-2_8 | en |
| dc.references | A. Ciabattoni, T. S. Lyon, R. Ramanayake, A. Tiu, Display to Labeled Proofs and Back Again for Tense Logics, ACM Transactions in Computational Logic, vol. 22(3) (2021), DOI: https://doi.org/10.1145/3460492 | en |
| dc.references | A. Ciabattoni, P. Maffezioli, L. Spendier, Hypersequent and Labelled Calculi for Intermediate Logics, [in:] D. Galmiche, D. Larchey-Wendling (eds.), Automated Reasoning with Analytic Tableaux and Related Methods, vol. 8123 of Lecture Notes in Computer Science, Springer, Berlin-Heidelberg (2013), pp. 81–96, DOI: https://doi.org/10.1007/978-3-642-40537-2_9 | en |
| dc.references | A. Ciabattoni, R. Ramanayake, Power and Limits of Structural Display Rules, ACM Transactions on Computational Logic, vol. 17(3) (2016), DOI: https://doi.org/10.1145/2874775 | en |
| dc.references | A. Ciabattoni, R. Ramanayake, Bunched Hypersequent Calculi for Distributive Substructural Logics, [in:] T. Eiter, D. Sands (eds.), LPAR-21, 21st International Conference on Logic for Programming, Artificial Intelligence and Reasoning, Maun, Botswana, May 7–12, 2017, vol. 46 of EPiC Series in Computing, EasyChair (2017), pp. 417–434, DOI: https://doi.org/10.29007/ngp3 | en |
| dc.references | A. Ciabattoni, L. Straßburger, K. Terui, Expanding the Realm of Systematic Proof Theory, [in:] E. Grädel, R. Kahle (eds.), Computer Science Logic, 23rd international Workshop, CSL 2009, 18th Annual Conference of the EACSL, Coimbra, Portugal, September 7–11, 2009, vol. 5771 of Lecture Notes in Computer Science, Springer (2009), pp. 163–178, DOI: https://doi.org/10.1007/978-3-642-04027-6_14 | en |
| dc.references | T. Dalmonte, B. Lellmann, N. Olivetti, E. Pimentel, Hypersequent calculi for non-normal modal and deontic logics: countermodels and optimal complexity, Journal of Logic and Computation, vol. 31(1) (2020), pp. 67–111, DOI: https://doi.org/10.1093/logcom/exaa072 | en |
| dc.references | K. Došen, Sequent-systems and groupoid models. I, Studia Logica, vol. 47(4) (1988), pp. 353–385, DOI: https://doi.org/10.1007/BF00671566 | en |
| dc.references | M. Dunn, A ’Gentzen’ system for positive relevant implication, The Journal of Symbolic Logic, vol. 38 (1974), pp. 356–357. | en |
| dc.references | R. Dyckhoff, Contraction-free sequent calculi for intuitionistic logic, The Journal of Symbolic Logic, vol. 57(3) (1992), pp. 795–807, DOI: https://doi.org/10.2307/2275431 | en |
| dc.references | R. Dyckhoff, Intuitionistic decision procedures since Gentzen, Advances in Proof Theory, (2016), pp. 245–267. | en |
| dc.references | R. Dyckhoff, S. Negri, Proof analysis in intermediate logics, Archive for Mathematical Logic, vol. 51(1–2) (2012), pp. 71–92, DOI: https://doi.org/10.1007/s00153-011-0254-7 | en |
| dc.references | M. Fitting, Tableau methods of proof for modal logics, Notre Dame Journal of Formal Logic, vol. 13(2) (1972), pp. 237–247. | en |
| dc.references | M. Fitting, Nested Sequents for Intuitionistic Logics, Notre Dame Journal of Formal Logic, vol. 55(1) (2014), pp. 41–61, DOI: https://doi.org/10.1215/00294527-2377869 | en |
| dc.references | M. Fitting, R. Kuznets, Modal interpolation via nested sequents, Annals of Pure and Applied Logic, vol. 166(3) (2015), pp. 274–305, DOI: https://doi.org/10.1016/j.apal.2014.11.002 | en |
| dc.references | D. Galmiche, M. Marti, D. Méry, Relating Labelled and Label-Free Bunched Calculi in BI Logic, [in:] 28th International Conference on Automated Reasoning with Analytic Tableaux and Related Methods, TABLEAUX 2019, vol. 11714, Springer, Londres, United Kingdom (2019), pp. 130–146, DOI: https://doi.org/10.1007/978-3-030-29026-9_8 | en |
| dc.references | D. Galmiche, D. Méry, D. Pym, The Semantics of BI and Resource Tableaux, Mathematical Structures in Computer Science, vol. 15(6) (2005), pp. 1033–1088, DOI: https://doi.org/10.1017/S0960129505004858 | en |
| dc.references | D. Galmiche, Y. Salhi, Tree-sequent calculi and decision procedures for intuitionistic modal logics, Journal of Logic and Computation, vol. 28(5) (2018), pp. 967–989, DOI: https://doi.org/https://doi.org/10.1093/logcom/exv039 | en |
| dc.references | G. Gentzen, Untersuchungen über das logische Schließen. I, Mathematische zeitschrift, vol. 39(1) (1935), pp. 176–210. | en |
| dc.references | G. Gentzen, Untersuchungen über das logische Schließen. II, Mathematische Zeitschrift, vol. 39(1) (1935), pp. 405–431. | en |
| dc.references | J.-Y. Girard, Linear logic, Theoretical Computer Science, vol. 50(1) (1987), pp. 1–101, DOI: https://doi.org/10.1016/0304-3975(87)90045-4 | en |
| dc.references | M. Girlando, B. Lellmann, N. Olivetti, G. L. Pozzato, Standard Sequent Calculi for Lewis’ Logics of Counterfactuals, [in:] L. Michael, A. C. Kakas (eds.), Logics in Artificial Intelligence – 15th European Conference, JELIA, vol. 10021 of Lecture Notes in Computer Science (2016), pp. 272–287, DOI: https://doi.org/10.1007/978-3-319-48758-8_18 | en |
| dc.references | M. Girlando, N. Olivetti, S. Negri, Counterfactual Logic: Labelled and Internal Calculi, Two Sides of the Same Coin?, [in:] G. Bezhanishvili, G. D’Agostino, G. Metcalfe, T. Studer (eds.), Advances in Modal Logic 12, College Publications (2018), pp. 291–310, URL: http://www.aiml.net/volumes/volume12/Girlando-Olivetti-Negri.pdf | en |
| dc.references | R. Goré, B. Lellmann, Syntactic Cut-Elimination and Backward Proof-Search for Tense Logic via Linear Nested Sequents, [in:] S. Cerrito, A. Popescu (eds.), Automated Reasoning with Analytic Tableaux and Related Methods, Springer International Publishing, Cham (2019), pp. 185–202, DOI: https://doi.org/10.1007/978-3-030-29026-9_11 | en |
| dc.references | R. Goré, L. Postniece, A. Tiu, Cut-elimination and proof-search for bi-intuitionistic logic using nested sequents, [in:] C. Areces, R. Goldblatt (eds.), Advances in Modal Logic 7, College Publications (2008), pp. 43–66, URL: http://www.aiml.net/volumes/volume7/Gore-Postniece-Tiu.pdf | en |
| dc.references | R. Goré, L. Postniece, A. Tiu, On the Correspondence between Display Postulates and Deep Inference in Nested Sequent Calculi for Tense Logics,Logical Methods in Computer Science, vol. 7(2) (2011), DOI: https://doi.org/10.2168/LMCS-7(2:8)2011. | en |
| dc.references | R. Goré, Substructural logics on display, Logic Journal of the IGPL, vol. 6(3) (1998), pp. 451–504, DOI: https://doi.org/10.1093/jigpal/6.3.451 | en |
| dc.references | G. Greco, M. Ma, A. Palmigiano, A. Tzimoulis, Z. Zhao, Unified correspondence as a proof-theoretic tool, Journal of Logic and Computation, vol. 28(7) (2018), pp. 1367–1442, DOI: https://doi.org/10.1093/logcom/exw022 | en |
| dc.references | A. Guglielmi, A System of Interaction and Structure, ACM Transactions on Computational Logic, vol. 8(1) (2007), p. 1–es, DOI: https://doi.org/10.1145/1182613.1182614 | en |
| dc.references | R. Hein, Geometric theories and proof theory of modal logic, Master’s thesis, Technische Universität Dresden (2005). | en |
| dc.references | A. Heyting, Die formalen Regeln der intuitionistischen Logik, Sitzungsbericht PreuBische Akademie der Wissenschaften Berlin, physikalisch-mathematische Klasse II, (1930), pp. 42–56. | en |
| dc.references | I. Horrocks, U. Sattler, Decidability of SHIQ with complex role inclusion axioms, Artificial Intelligence, vol. 160(1–2) (2004), pp. 79–104, DOI: https://doi.org/10.1016/j.artint.2004.06.002 | en |
| dc.references | A. Indrzejczak, Linear Time in Hypersequent Framework, The Bulletin of Symbolic Logic, vol. 22(1) (2016), pp. 121–144, DOI: https://doi.org/10.1017/bsl.2016.2 | en |
| dc.references | A. Indrzejczak, Cut elimination in Hypersequent Calculus for some Logics of Linear Time, The Review of Symbolic Logic, vol. 12(4) (2019), pp. 806–822, DOI: https://doi.org/10.1017/S1755020319000352 | en |
| dc.references | R. Ishigaki, K. Kikuchi, Tree-Sequent Methods for Subintuitionistic Predicate Logics, [in:] N. Olivetti (ed.), Automated Reasoning with Analytic Tableaux and Related Methods, vol. 4548 of Lecture Notes in Computer Science, Springer, Berlin-Heidelberg (2007), pp. 149–164. | en |
| dc.references | S. Kanger, Provability in logic, Almqvist & Wiksell (1957). | en |
| dc.references | R. Kashima, Cut-free sequent calculi for some tense logics, Studia Logica, vol. 53(1) (1994), pp. 119–135, DOI: https://doi.org/10.1007/978-3-319-10061-6_4 | en |
| dc.references | M. Kracht, Power and Weakness of the Modal Display Calculus, [in:] H. Wansing (ed.), Proof Theory of Modal Logic, Springer Netherlands, Dordrecht (1996), pp. 93–121, DOI: https://doi.org/10.1007/978-94-017-2798-3_7 | en |
| dc.references | S. A. Kripke, Semantical Analysis of Intuitionistic Logic I, [in:] J. Crossley, M. Dummett (eds.), Formal Systems and Recursive Functions, vol. 40 of Studies in Logic and the Foundations of Mathematics, Elsevier (1965), pp. 92–130, DOI: https://doi.org/10.1016/S0049-237X(08)71685-9 | en |
| dc.references | H. Kurokawa, Hypersequent Calculi for Modal Logics Extending S4, New Frontiers in Artificial Intelligence, (2013), pp. 51–68. | en |
| dc.references | H. Kushida, M. Okada, A proof-theoretic study of the correspondence of classical logic and modal logic, Journal of Symbolic Logic, vol. 68(4) (2003), pp. 1403–1414, DOI: https://doi.org/10.2178/jsl/1067620195 | en |
| dc.references | R. Kuznets, Proving Craig and Lyndon Interpolation Using Labelled Sequent Calculi, [in:] L. Michael, A. Kakas (eds.), Logics in Artificial Intelligence, vol. 10021 of Lecture Notes in Computer Science, Springer International Publishing, Cham (2016), pp. 320–335, DOI: https://doi.org/10.1007/978-3-319-48758-8_21 | en |
| dc.references | R. Kuznets, B. Lellmann, Interpolation for Intermediate Logics via Hyper- and Linear Nested Sequents, [in:] G. Bezhanishvili, G. D’Agostino, G. Metcalfe, T. Studer (eds.), Advances in Modal Logic 12, College Publications (2018), pp. 473–492, URL: http://www.aiml.net/volumes/volume12/Kuznets-Lellmann.pdf | en |
| dc.references | O. Lahav, From Frame Properties to Hypersequent Rules in Modal Logics, [in:] 28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, New Orleans, LA, USA, June 25–28, 2013(2013), pp. 408–417, DOI: https://doi.org/10.1109/LICS.2013.47 | en |
| dc.references | D. Leivant, Proof theoretic methodology for propositional dynamic logic, [in:] J. Díaz, I. Ramos (eds.), Formalization of Programming Concepts, Springer, Berlin-Heidelberg (1981), pp. 356–373, DOI: https://doi.org/10.1007/3-540-10699-5_111 | en |
| dc.references | B. Lellmann, Linear Nested Sequents, 2-Sequents and Hypersequents, [in:] H. De Nivelle (ed.), Automated Reasoning with Analytic Tableaux and Related Methods, vol. 9323 of Lecture Notes in Computer Science, Springer International Publishing, Cham (2015), pp. 135–150, DOI: https://doi.org/10.1007/978-3-319-24312-2_10 | en |
| dc.references | B. Lellmann, Hypersequent rules with restricted contexts for propositional modal logics, Theoretical Computer Science, vol. 656 (2016), pp. 76–105, DOI: https://doi.org/https://doi.org/10.1016/j.tcs.2016.10.004 | en |
| dc.references | B. Lellmann, D. Pattinson, Correspondence between modal Hilbert axioms and sequent rules with an application to S5, [in:] Automated Reasoning with Analytic Tableaux and Related Methods: 22nd International Conference, TABLEAUX 2013, Nancy, France, September 16–19, 2013, Springer (2013), pp. 219–233, DOI: https://doi.org/10.1007/978-3-642-40537-2_19 | en |
| dc.references | B. Lellmann, E. Pimentel, Proof Search in Nested Sequent Calculi, [in:] M. Davis, A. Fehnker, A. McIver, A. Voronkov (eds.), Logic for Programming, Artificial Intelligence, and Reasoning – 20th International Conference, LPAR-20, vol. 9450 of Lecture Notes in Computer Science, Springer-Verlag, Berlin-Heidelberg (2015), p. 558–574, DOI: https://doi.org/10.1007/978-3-662-48899-7_39 | en |
| dc.references | I. Lewis, A survey of symbolic logic, University of California Press (1918). | en |
| dc.references | D. Lewis, Counterfactuals, Blackwell, Hobokin (1973). | en |
| dc.references | T. S. Lyon, On the Correspondence between Nested Calculi and Semantic Systems for Intuitionistic Logics, Journal of Logic and Computation, vol. 31(1) (2020), pp. 213–265, DOI: https://doi.org/10.1093/logcom/exaa078 | en |
| dc.references | T. S. Lyon, Syntactic Cut-Elimination for Intuitionistic Fuzzy Logic via Linear Nested Sequents, [in:] S. N. Artëmov, A. Nerode (eds.), Logical Foundations of Computer Science – International Symposium, LFCS 2020, Deerfield Beach, FL, USA, January 4–7, 2020, vol. 11972 of Lecture Notes in Computer Science, Springer (2020), pp. 156–176, DOI: https://doi.org/10.1007/978-3-030-36755-8_11 | en |
| dc.references | T. S. Lyon, Nested Sequents for Intuitionistic Modal Logics via Structural Refinement, [in:] A. Das, S. Negri (eds.), Automated Reasoning with Analytic Tableaux and Related Methods, Springer International Publishing, Cham (2021), pp. 409–427, DOI: https://doi.org/https://doi.org/10.1007/978-3-030-86059-2_24 | en |
| dc.references | T. S. Lyon, Refining Labelled Systems for Modal and Constructive Logics with Applications, Ph.D. thesis, Technische Universität Wien (2021). | en |
| dc.references | T. S. Lyon, Nested Sequents for Intermediate Logics: The Case of Gödel-Dummett Logics, Journal of Applied Non-Classical Logics, vol. 33(2) (2023), pp. 121–164, DOI: https://doi.org/10.1080/11663081.2023.2233346 | en |
| dc.references | T. S. Lyon, Realizing the Maximal Analytic Display Fragment of Labeled Sequent Calculi for Tense Logics, Found on arXiv, (2024), URL: https://arxiv.org/abs/2406.19882 | en |
| dc.references | T. S. Lyon, Unifying Sequent Systems for Gödel-Löb Provability Logic via Syntactic Transformations, [in:] J. Endrullis, S. Schmitz (eds.),33rd EACSL Annual Conference on Computer Science Logic (CSL 2025), vol. 326 of Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2025), pp. 42:1–42:23, DOI: https://doi.org/10.4230/LIPIcs.CSL.2025.42 | en |
| dc.references | T. S. Lyon, L. Gómez Álvarez, Automating Reasoning with Standpoint Logic via Nested Sequents, [in:] Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning (2022), pp. 257–266, DOI: https://doi.org/10.24963/kr.2022/26 | en |
| dc.references | T. S. Lyon, E. Orlandelli, Nested Sequents for Quantified Modal Logics, [in:] R. Ramanayake, J. Urban (eds.), Automated Reasoning with Analytic Tableaux and Related Methods, Springer Nature Switzerland, Cham (2023), pp. 449–467, DOI: https://doi.org/10.1007/978-3-031-43513-3_24 | en |
| dc.references | T. S. Lyon, P. Ostropolski-Nalewaja, Foundations for an Abstract Proof Theory in the Context of Horn Rules, Found on arXiv, (2024), URL: https://arxiv.org/abs/2304.05697 | en |
| dc.references | T. S. Lyon, I. Shillito, A. Tiu, Taking Bi-Intuitionistic Logic First-Order: A Proof-Theoretic Investigation via Polytree Sequents, [in:] J. Endrullis, S. Schmitz (eds.), 33rd EACSL Annual Conference on Computer Science Logic (CSL 2025), vol. 326 of Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2025), pp. 41:1–41:23, DOI: https://doi.org/10.4230/LIPIcs.CSL.2025.41 | en |
| dc.references | T. S. Lyon, A. Tiu, R. Goré, R. Clouston, Syntactic Interpolation for Tense Logics and Bi-Intuitionistic Logic via Nested Sequents, [in:] M. Fernández, A. Muscholl (eds.), 28th EACSL Annual Conference on Computer Science Logic, CSL 2020, vol. 152 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020), pp. 28:1–28:16, DOI: https://doi.org/10.4230/LIPIcs.CSL.2020.28 | en |
| dc.references | T. S. Lyon, K. van Berkel, Automating Agential Reasoning: Proof-Calculi and Syntactic Decidability for STIT Logics, [in:] M. Baldoni, M. Dastani, B. Liao, Y. Sakurai, R. Zalila Wenkstern (eds.), PRIMA 2019: Principles and Practice of Multi-Agent Systems - 22nd International Conference, vol. 11873 of Lecture Notes in Computer Science, Springer International Publishing, Cham (2019), pp. 202–218. | en |
| dc.references | T. S. Lyon, K. van Berkel, Proof Theory and Decision Procedures for Deontic STIT Logics, Journal of Artificial Intelligence Research, vol. 81 (2024), pp. 837–876, DOI: https://doi.org/https://doi.org/10.48550/arXiv.2402.03148 | en |
| dc.references | S. Maehara, Eine Darstellung der Intuitionistischen Logik in der Klassischen, Nagoya Mathematical Journal, vol. 7 (1954), p. 45–64, DOI: https://doi.org/10.1017/S0027763000018055 | en |
| dc.references | S. Maehara, On the interpolation theorem of Craig, Sûgaku, vol. 12(4) (1960), pp. 235–237. | en |
| dc.references | S. Marin, M. Morales, L. Straßburger, A fully labelled proof system for intuitionistic modal logics, Journal of Logic and Computation, vol. 31(3) (2021), pp. 998–1022, DOI: https://doi.org/10.1093/logcom/exab020 | en |
| dc.references | A. Masini, 2-sequent calculus: A proof theory of modalities, Annals of Pure and Applied Logic, vol. 58(3) (1992), pp. 229–246, DOI: https://doi.org/10.1016/0168-0072(92)90029-Y | en |
| dc.references | A. Masini, 2-sequent calculus: Intuitionism and natural deduction, Journal of Logic and Computation, vol. 3(5) (1993), pp. 533–562, DOI: https://doi.org/10.1093/logcom/3.5.533 | en |
| dc.references | L. McMillan, Interpolation and Model Checking, [in:] E. M. Clarke, T. A. Henzinger, H. Veith, R. Bloem (eds.), Handbook of Model Checking, Springer International Publishing, Cham (2018), pp. 421–446, DOI: https://doi.org/10.1007/978-3-319-10575-8_14 | en |
| dc.references | G. Metcalfe, N. Olivetti, D. M. Gabbay, Sequent and hypersequent calculi for abelian and Łukasiewicz logics, ACM Transactions on Computational Logic, vol. 6(3) (2005), pp. 578–613, DOI: https://doi.org/10.1145/1071596.1071600 | en |
| dc.references | E. Mints, Some calculi of modal logic, Trudy Matematicheskogo Instituta imeni VA Steklova, vol. 98 (1968), pp. 88–111. | en |
| dc.references | E. Mints, Studies in constructive mathematics and mathematical logic. Part V, Nauka, Leningrad. Otdel, chap. Cut-elimination theorem for relevant logics (in Russian) (1972), pp. 90–97. | en |
| dc.references | G. E. Mints, Indexed systems of sequents and cut-elimination, Journal of Philosophical Logic, vol. 26(6) (1997), pp. 671–696, DOI: https://doi.org/10.1023/A:1017948105274 | en |
| dc.references | S. Negri, Proof analysis in modal logic, Journal of Philosophical Logic, vol. 34(5–6) (2005), p. 507, DOI: https://doi.org/10.1007/s10992-005-2267-3 | en |
| dc.references | P. W. O’Hearn, D. Pym, The Logic of Bunched Implications, Bulletin of Symbolic Logic, vol. 5(2) (1999), pp. 215–244, DOI: https://doi.org/https://doi.org/10.2307/421090 | en |
| dc.references | E. Pimentel, R. Ramanayake, B. Lellmann, Sequentialising Nested Systems, [in:] S. Cerrito, A. Popescu (eds.), Automated Reasoning with Analytic Tableaux and Related Methods, vol. 11714 of Lecture Notes in Computer Science, Springer International Publishing, Cham (2019), pp. 147–165, DOI: https://doi.org/10.1007/978-3-030-29026-9_9 | en |
| dc.references | F. Poggiolesi, A Cut-free Simple Sequent calculus for Modal Logic S5,The Review of Symbolic Logic, vol. 1(1) (2008), p. 3–15, DOI: https://doi.org/10.1017/S1755020308080040 | en |
| dc.references | F. Poggiolesi, The Method of Tree-Hypersequents for Modal Propositional Logic, [in:] D. Makinson, J. Malinowski, H. Wansing (eds.), Towards Mathematical Philosophy, vol. 28 of Trends in logic, Springer (2009), pp. 31–51, DOI: https://doi.org/10.1007/978-1-4020-9084-4_3 | en |
| dc.references | F. Poggiolesi, A Tree-Hypersequent Calculus for the Modal Logic of Provability, Springer Netherlands, Dordrecht (2011), pp. 187–201, DOI: https://doi.org/10.1007/978-90-481-9670-8_10 | en |
| dc.references | F. Poggiolesi, G. Restall, Interpreting and Applying Proof Theories for Modal Logic, Palgrave Macmillan UK, London (2012), pp. 39–62, DOI: https://doi.org/10.1057/9781137003720_4 | en |
| dc.references | E. Pottinger, Uniform, cut-free formulations of T, S4 and S5, Journal of Symbolic Logic, vol. 48(3) (1983), p. 900. | en |
| dc.references | N. Prior, Time and Modality, Oxford University Press (1957). | en |
| dc.references | D. Pym, The Semantics and Proof Theory of the Logic of Bunched Implications, vol. 26 of Applied Logic Series, Kluwer Academic Publishers (2002), DOI: https://doi.org/10.1007/978-94-017-0091-7 | en |
| dc.references | S. Read, Semantic Pollution and Syntactic Purity, The Review of Symbolic Logic, vol. 8(4) (2015), DOI: https://doi.org/10.1017/S1755020315000210 | en |
| dc.references | G. Restall, Proofnets for S5: sequents and circuits for modal logic, [in:]Logic Colloquium 2005, Lecture Notes in Logic, vol. 28, Cambridge University Press (2007), pp. 151–172. | en |
| dc.references | K. Simpson, The proof theory and semantics of intuitionistic modal logic, Ph.D. thesis, University of Edinburgh. College of Science and Engineering. School of Informatics (1994). | en |
| dc.references | K. Slaney, Minlog: A Minimal Logic Theorem Prover, [in:] W. McCune (ed.), Automated Deduction – CADE-14, 14th International Conference on Automated Deduction, Townsville, North Queensland, Australia, vol. 1249 of Lecture Notes in Computer Science, Springer (1997), pp. 268–271, DOI: https://doi.org/10.1007/3-540-63104-6_27 | en |
| dc.references | L. Straßburger, Cut Elimination in Nested Sequents for Intuitionistic Modal Logics, [in:] F. Pfenning (ed.), Foundations of Software Science and Computation Structures, vol. 7794 of Lecture Notes in Computer Science, Springer, Berlin-Heidelberg (2013), pp. 209–224, DOI: https://doi.org/10.1007/978-3-642-37075-5_14 | en |
| dc.references | A. Tiu, E. Ianovski, R. Goré, Grammar Logics in Nested Sequent Calculus: Proof Theory and Decision Procedures, [in:] T. Bolander, T. Braüner, S. Ghilardi, L. S. Moss (eds.), Advances in Modal Logic 9, College Publications (2012), pp. 516–537, URL: http://www.aiml.net/volumes/volume9/Tiu-Ianovski-Gore.pdf | en |
| dc.references | K. van Berkel, T. S. Lyon, Cut-Free Calculi and Relational Semantics for Temporal STIT Logics, [in:] F. Calimeri, N. Leone, M. Manna (eds.), Logics in Artificial Intelligence, Springer International Publishing, Cham (2019), pp. 803–819, DOI: https://doi.org/10.1007/978-3-030-19570-0_52 | en |
| dc.references | K. van Berkel, T. S. Lyon, The Varieties of Ought-implies-Can and Deontic STIT Logic, [in:] F. Liu, A. Marra, P. Portner, F. V. D. Putte (eds.), Deontic Logic and Normative Systems: 15th International Conference (DEON2020/2021), College Publications (2021), URL: https://www.collegepublications.co.uk/DEON/Van%20Berkel%20&%20Lyon_DEON2020.pdf | en |
| dc.references | L. Viganò, Labelled Non-Classical Logics, Springer Science & Business Media (2000), DOI: https://doi.org/10.1007/978-1-4757-3208-5 | en |
| dc.references | H. Wansing, Sequent calculi for normal modal propositional logics, Journal of Logic and Computation, vol. 4(2) (1994), pp. 125–142, DOI: https://doi.org/10.1093/logcom/4.2.125 | en |
| dc.references | H. Wansing, Sequent Systems for Modal Logics, [in:] D. M. Gabbay, F. Guenthner (eds.), Handbook of Philosophical Logic: Volume 8, Springer Netherlands, Dordrecht (2002), pp. 61–145, DOI: https://doi.org/10.1007/978-94-010-0387-2_2 | en |
| dc.references | F. Wolter, On Logics with Coimplication, Journal of Philosophical Logic, vol. 27(4) (1998), pp. 353–387, DOI: https://doi.org/10.1023/A:1004218110879 | en |
| dc.contributor.authorEmail | Lyon, Tim S. - timothy_stephen.lyon@tu-dresden.de | |
| dc.contributor.authorEmail | Ciabattoni, Agata - agata@logic.at | |
| dc.contributor.authorEmail | Galmiche, Didier - didier.galmiche@loria.fr | |
| dc.contributor.authorEmail | Girlando, Marianna - m.girlando@uva.nl | |
| dc.contributor.authorEmail | Larchey-Wendling, Dominique - dominique.larchey-wendling@loria.fr | |
| dc.contributor.authorEmail | Méry, Daniel - daniel.mery@loria.fr | |
| dc.contributor.authorEmail | Olivetti, Nicola - nicola.olivetti@univ-amu.fr | |
| dc.contributor.authorEmail | Ramanayake, Revantha - d.r.s.ramanayake@rug.nl | |
| dc.identifier.doi | 10.18778/0138-0680.2025.02 | |
| dc.relation.volume | 54 | |