| dc.contributor.author | Gacek, Kamil | |
| dc.date.accessioned | 2025-11-25T14:50:04Z | |
| dc.date.available | 2025-11-25T14:50:04Z | |
| dc.date.issued | 2025-07-08 | |
| dc.identifier.issn | 0208-6018 | |
| dc.identifier.uri | http://hdl.handle.net/11089/56776 | |
| dc.description.abstract | This study examines the evolution of industrial waste generation within the Polish economy over the decade of 2010–2020. Rapid economic growth, structural shifts among sectors, and growing environmental awareness have influenced waste production patterns. While numerous studies have addressed related topics in other contexts, a gap remains in assessing how technological changes and shifts in final demand jointly shape industrial waste generation in Poland.The article aims to investigate how changes in technology and final demand affected the volume and composition of waste in the Polish economy, thereby providing insights for policymakers and stakeholders seeking to enhance sustainability and resource efficiency.The research uses Environmental Extended Input-Output (EEIO) models combined with Structural Decomposition Analysis (SDA). Using Input-Output tables for Poland from 2010 and 2020 along with waste generation data aggregated into 17 sectoral clusters, the study decomposes changes in waste output into waste intensity, technological shifts, and final demand components. Further disaggregation captures the effects of product-mix adjustments, changes in demand composition, and sector-specific technological innovations.Results show that final demand is the dominant driver of increased waste generation. Technological changes produced mixed effects across sectors: the Electricity, Gas, Steam and Air Conditioning Supply sector recorded the largest reduction in waste generation, while the Waste Collection, Treatment and Disposal Activities; Materials Recovery sector experienced a significant increase. Additionally, Mining and Quarrying along with Construction played key roles, with the former undergoing notable technology-driven shifts, and the latter influenced by adjustments in both technology and final demand. These insights provide policymakers with a valuable reference for targeted waste reduction strategies while enhancing the understanding of how economic dynamics and technological progress shape environmental sustainability. | en |
| dc.description.abstract | Celem artykułu jest zbadanie, w jaki sposób zmiany technologiczne oraz zmiany w popycie finalnym wpłynęły na wielkość i strukturę odpadów przemysłowych w Polsce w latach 2010–2020. Zastosowane zostały rozszerzone modele przepływów międzygałęziowych w połączeniu z analizą dekompozycji strukturalnej. Z wykorzystaniem tablic przepływów międzygałęziowych dla lat 2010 i 2020 oraz danych o wytwarzaniu odpadów, zagregowanych w 17 klastrów sektorowych, rozłożono zmiany w ilości generowanych odpadów na składniki intensywności odpadowej, postęp techniczny i ewolucję popytu finalnego wraz z ich dalszym podziałem. Wyniki wskazują, że głównym czynnikiem wzrostu wytwarzania odpadów był rosnący popyt finalny, natomiast wpływ zmian technologicznych był zróżnicowany – sektor wytwarzania i zaopatrzenia w energię elektryczną, gaz, parę i klimatyzację odnotował największy spadek odpadów, podczas gdy sektor gospodarki odpadami wyraźnie je zwiększył. Górnictwo i wydobywanie oraz budownictwo odegrały kluczową rolę: pierwsze dzięki zmianom technologicznym, drugie poprzez połączone efekty technologii i popytu. Otrzymane wnioski dostarczają podstaw do projektowania ukierunkowanych strategii redukcji odpadów i pogłębiają zrozumienie zależności między dynamiką gospodarczą, postępem technologicznym a zrównoważonym rozwojem. | pl |
| dc.language.iso | en | |
| dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
| dc.relation.ispartofseries | Acta Universitatis Lodziensis. Folia Oeconomica;371 | en |
| dc.rights.uri | https://creativecommons.org/licenses/by/4.0 | |
| dc.subject | Input-Output models | en |
| dc.subject | waste generation | en |
| dc.subject | Leontief models | en |
| dc.subject | structural decomposition analysis | en |
| dc.subject | odpady przemysłowe | pl |
| dc.subject | modele przepływów międzygałęziowych | pl |
| dc.subject | modele Leontiefa | pl |
| dc.subject | dekompozycja strukturalna | pl |
| dc.title | Industrial Waste in Poland (2010–2020): A Sectoral View Using Input-Output Models and Structural Decomposition Analysis | en |
| dc.title.alternative | Odpady przemysłowe w Polsce w latach 2010–2020: ujęcie sektorowe z wykorzystaniem modeli przepływów międzygałęziowych i dekompozycji strukturalnej | pl |
| dc.type | Article | |
| dc.page.number | 1-24 | |
| dc.contributor.authorAffiliation | AGH University of Krakow, Poland | en |
| dc.identifier.eissn | 2353-7663 | |
| dc.references | Bajpai P. (2015), Generation of Waste in Pulp and Paper Mills, [in:] P. Bajpai, Management of Pulp and Paper Mill Waste, Springer, Cham–Heidelberg–New York–Dordrecht–London, pp. 9–17, https://doi.org/10.1007/978-3-319-11788-1_2 | en |
| dc.references | Bisello A., Vettorato D., Ludlow D., Baranzelli C. (eds.) (2021), Smart and Sustainable Planning for Cities and Regions: Results of SSPCR 2019 – Open access contributions, Springer, Cham, https://doi.org/10.1007/978-3-030-57764-3 | en |
| dc.references | Brodny J., Tutak M. (2022), Challenges of the Polish coal mining industry in its way to innovative and sustainable development, “Journal of Cleaner Production”, vol. 375, 134061, https://doi.org/10.1016/j.jclepro.2022.134061 | en |
| dc.references | Ciuła J., Bajdur W., Gronba-Chyla A., Kwaśnicki P. (2023), Transformation of Municipal Waste Management in Poland Towards a Circular Economy, “Rocznik Ochrona Środowiska”, vol. 25, pp. 374–382, https://doi.org/10.54740/ros.2023.038 | en |
| dc.references | Depczyński R. (2022), The assessment of product groups and efficiency in the use of raw materials and waste management towards sustainable development – case study of the steel manufacturing company in Poland, “Procedia Computer Science”, vol. 207, pp. 4306–4317, https://doi.org/10.1016/j.procs.2022.09.494 | en |
| dc.references | Dietzenbacher E., Los B. (1998), Structural decomposition techniques: sense and sensitivity, “Economic Systems Research”, vol. 10(4), pp. 307–324, https://doi.org/10.1080/09535319800000023 | en |
| dc.references | Domini M., Bertanza G., Vahidzadeh R., Pedrazzani R. (2022), Sewage Sludge Quality and Management for Circular Economy Opportunities in Lombardy, “Applied Sciences”, vol. 12(20), 10391, https://doi.org/10.3390/app122010391 | en |
| dc.references | El-Haggar S.M. (2007), Sustainable Industrial Design and Waste Management: Cradle-to-cradle for Sustainable Development, Burlington: Academic Press, https://doi.org/10.1016/B978-0-12-373623-9.X5000-X | en |
| dc.references | European Environment Agency (2022), Early warning assessment related to the 2025 targets for municipal waste and packaging waste: Poland country profile, https://www.eea.europa.eu/publications/many-eu-member-states/poland/view [accessed: 20.01.2025]. | en |
| dc.references | Eurostat (2024a), Generation of waste by waste category, hazardousness and NACE Rev. 2 activity (env_wasgen), https://doi.org/10.2908/env_wasgen | en |
| dc.references | Eurostat (2024b), Waste electrical and electronic equipment (WEEE) statistics, https://ec.europa.eu/eurostat/databrowser/view/env_waseleeos/default/table?lang=en [accessed: 13.02.2025]. | en |
| dc.references | Fernández-Arias P., Vergara D., Antón-Sancho Á. (2023), Global Review of International Nuclear Waste Management, “Energies”, vol. 16(17), 6215, https://doi.org/10.3390/en16176215 | en |
| dc.references | Filimonau V., De Coteau D.A. (2020), Food waste in hospitality and food services: A systematic literature review, “Journal of Cleaner Production”, vol. 270, 122861, https://doi.org/10.1016/j.jclepro.2020.122861 | en |
| dc.references | Gacek K. (2024), Tracing the drivers of waste generation in Poland (2010–2018): a structural decomposition and input–output approach, “Bulletin of Geography. Socio-economic Series”, no. 63, pp. 75–85, https://doi.org/10.12775/bgss-2024-0006 | en |
| dc.references | Gawlik L., Mokrzycki E. (2019), Changes in the Structure of Electricity Generation in Poland in View of the EU Climate Package, “Energies”, vol. 12(17), 3323, https://doi.org/10.3390/en12173323 | en |
| dc.references | Grodzińska-Jurczak, M. (2001), Management of industrial and municipal solid wastes in Poland, “Resources, Conservation and Recycling”, vol. 32(2), pp. 85–103, https://doi.org/10.1016/S0921-3449(00)00097-5 | en |
| dc.references | He H., Reynolds Ch.J., Zhou Z., Wang Y., Boland J. (2019), Changes of waste generation in Australia: Insights from structural decomposition analysis, “Waste Management”, vol. 83, pp. 142–150, https://doi.org/10.1016/j.wasman.2018.11.004 | en |
| dc.references | Huang B., Wang X., Kua H., Geng Y., Bleischwitz R., Ren J. (2018), Construction and demolition waste management in China through the 3R principle, “Resources, Conservation and Recycling”, vol. 129, pp. 36–44, https://doi.org/10.1016/j.resconrec.2017.09.029 | en |
| dc.references | Kęps W., Jaszczura K. (2020), Instalacje termicznego przekształcania odpadów w Polsce, “Inżynieria Mineralna”, vol. 1(1), pp. 47–50, https://doi.org/10.29227/IM-2020-01-07 | en |
| dc.references | KGHM Polska Miedź S.A. (2011), Raport roczny za rok 2010, https://kghm.com/pl/raport-roczny-za-rok-2010 [accessed: 28.01.2025]. | en |
| dc.references | KGHM Polska Miedź S.A. (2021), Zintegrowany Raport Roczny 2020, https://kghm.com/pl/zintegrowany-raport-roczny-2020 [accessed: 28.01.2025]. | en |
| dc.references | Lach Ł. (2022), Optimization based structural decomposition analysis as a tool for supporting environmental policymaking, “Energy Economics”, vol. 115, 106332, https://doi.org/10.1016/j.eneco.2022.106332 | en |
| dc.references | Lee D., Kim J., Park H.-S. (2022), Characterization of industrial hazardous waste generation in South Korea using input-output approach, “Resources, Conservation and Recycling”, vol. 183, 106365, https://doi.org/10.1016/j.resconrec.2022.106365 | en |
| dc.references | Lins M., Zandonadi R.P., Raposo A., Ginani V.C. (2021), Food Waste on Foodservice: An Overview Through the Perspective of Sustainable Dimensions, “Foods”, vol. 10(6), 1175, https://doi.org/10.3390/foods10061175 | en |
| dc.references | Liu J., Wang R., Tian Y., Zhang M. (2024), The driving mechanisms of industrial air pollution spatial correlation networks: A case study of 168 Chinese cities, “Journal of Cleaner Production”, vol. 470, 143255, https://doi.org/10.1016/j.jclepro.2024.143255 | en |
| dc.references | Marszał K., Śniegocki A., Wetmańska Z., Kachi A., Cochran I., Hainaut H., Ledez M. (2020), Renowacja. Panorama niskoemisyjnych inwestycji w sektorze budynków, https://wise-europa.eu/wp-content/uploads/2024/06/Renowacja.-Panorama-niskoemisyjnych-inwestycji-w-sektorze-budynkow.pdf [accessed: 8.01.2025]. | en |
| dc.references | Marszowski R., Iwaszenko S. (2021), Mining in Poland in Light of Energy Transition: Case Study of Changes Based on the Knowledge Economy, “Sustainability”, vol. 13(24), 13649, https://doi.org/10.3390/su132413649 | en |
| dc.references | Meyer D.E., Li M., Ingwersen W.W. (2020), Analyzing economy-scale solid waste generation using the United States environmentally-extended input-output model, “Resources, Conservation and Recycling”, vol. 157, 104795, https://doi.org/10.1016/j.resconrec.2020.104795 | en |
| dc.references | Midor K., Michalski K. (eds.) (2015), Górnictwo węgla kamiennego. Inteligentne rozwiązania, Wydawnictwo P.A. NOVA S.A., Gliwice, http://www.stegroup.pl/attachments/article/1/Caly2.pdf [accessed: 18.02.2025]. | en |
| dc.references | Millati R., Cahyono R.B., Ariyanto T., Azzahrani I.N., Putri R.U., Taherzadeh M.J. (2019), Agricultural, Industrial, Municipal, and Forest Wastes: An Overview, [in:] M.J. Taherzadeh, K. Bolton, J. Wong, A. Pandey (eds.), Sustainable Resource Recovery and Zero Waste Approaches, Elsevier, Amsterdam, pp. 1–22, https://doi.org/10.1016/B978-0-444-64200-4.00001-3 | en |
| dc.references | Miller R.E., Blair P.D. (2022), Input-Output Analysis: Foundations and Extensions, Cambridge University Press, New York, https://doi.org/10.1017/9781108676212 | en |
| dc.references | Mostaghimi K., Behnamian J. (2023), Waste minimization towards waste management and cleaner production strategies: A literature review, “Environmental Development and Sustainability”, vol. 25(11), pp. 12119–12166, https://doi.org/10.1007/s10668-022-02599-7 | en |
| dc.references | Nakamura S., Kondo Y. (2002), Input-Output Analysis of Waste Management, “Journal of Industrial Ecology”, vol. 6(1), pp. 39–63, https://doi.org/10.1162/108819802320971632 | en |
| dc.references | Nkuna R., Ijoma G.N., Matambo T.S., Chimwani N. (2022), Accessing Metals from Low-Grade Ores and the Environmental Impact Considerations: A Review of the Perspectives of Conventional versus Bioleaching Strategies, “Minerals”, vol. 12(5), 506, https://doi.org/10.3390/min12050506 | en |
| dc.references | Olejnik D., Krupa M. (2023), Selected Thermal Waste Treatment Plants in Europe: Case Study, “Civil and Environmental Engineering Reports”, vol. 33(3), pp. 1–18, https://doi.org/10.59440/ceer/175240 | en |
| dc.references | Pactwa K., Woźniak J., Dudek M. (2020), Coal mining waste in Poland in reference to circular economy principles, “Fuel”, vol. 270, 117493, https://doi.org/10.1016/j.fuel.2020.117493 | en |
| dc.references | Pohl H.R., Tarkowski S., Buczynska A., Fay M., De Rosa C.T. (2008), Chemical exposures at hazardous waste sites: Experiences from the United States and Poland, “Environmental Toxicology and Pharmacology”, vol. 25(3), pp. 283–291, https://doi.org/10.1016/j.etap.2007.12.005 | en |
| dc.references | Read Q.D., Brown S., Cuéllar A.D., Finn S.M., Gephart J.A., Marston L.T., Meyer E., Weitz K.A., Muth M.K. (2020), Assessing the environmental impacts of halving food loss and waste along the food supply chain, “Science of The Total Environment”, vol. 712, 136255, https://doi.org/10.1016/j.scitotenv.2019.136255 | en |
| dc.references | Riesenegger L., Hübner A. (2022), Reducing Food Waste at Retail Stores – An Explorative Study, “Sustainability”, vol. 14(5), 2494, https://doi.org/10.3390/su14052494 | en |
| dc.references | Ruiz-Peñalver S.M., Rodríguez M., Camacho J.A. (2019), A waste generation input output analysis: The case of Spain, “Journal of Cleaner Production”, vol. 210, pp. 1475–1482, https://doi.org/10.1016/j.jclepro.2018.11.145 | en |
| dc.references | Santucci L., Carol E., Tanjal C. (2018), Industrial waste as a source of surface and groundwater pollution for more than half a century in a sector of the Río de la Plata coastal plain (Argentina), “Chemosphere”, vol. 206, pp. 727–735, https://doi.org/10.1016/j.chemosphere.2018.05.084 | en |
| dc.references | Song J., Yang W., Li Z., Higano Y., Wang X. (2016), Discovering the energy, economic and environmental potentials of urban wastes: An input–output model for a metropolis case, “Energy Conversion and Management”, vol. 114, pp. 168–179, https://doi.org/10.1016/j.enconman.2016.02.014 | en |
| dc.references | Statistics Poland (2015), Input-output table at basic prices in 2010, https://stat.gov.pl/en/topics/national-accounts/annual-national-accounts/input-output-table-at-basic-prices-in-2015,5,3.html [accessed: 14.12.2024]. | en |
| dc.references | Statistics Poland (2021a), Energia ze źródeł odnawialnych w 2020 r., https://stat.gov.pl/download/gfx/portalinformacyjny/pl/defaultaktualnosci/5485/10/4/1/energia_ze_zrodel_odnawialnych_w_2020_r..pdf [accessed: 21.01.2025]. | en |
| dc.references | Statistics Poland (2021b), Produkcja budowlano-montażowa w 2020 roku, https://stat.gov.pl/obszary-tematyczne/przemysl-budownictwo-srodki-trwale/budownictwo/produkcja-budowlano-montazowa-w-2020-roku,12,6.html (accessed: January 21.01.2025). | en |
| dc.references | Statistics Poland (2023), Environment 2023, https://stat.gov.pl/en/topics/environment-energy/environment/environment-2023,1,15.html [accessed: 14.12.2024]. | en |
| dc.references | Statistics Poland (2024), Input-output table at basic prices in 2020, https://stat.gov.pl/en/topics/national-accounts/annual-national-accounts/input-output-table-at-basic-prices-in-2020,5,4.html [accessed: 14.12.2024]. | en |
| dc.references | Towa E., Zeller V., Achten W.M.J. (2020), Input-output models and waste management analysis: A critical review, “Journal of Cleaner Production”, vol. 249, 119359, https://doi.org/10.1016/j.jclepro.2019.119359 | en |
| dc.references | U.S. Environmental Protection Agency (2020), Advancing Sustainable Materials Management: 2018 Fact Sheet, https://www.epa.gov/sites/default/files/2021-01/documents/2018_ff_fact_sheet_dec_2020_fnl_508.pdf [accessed: 11.12.2024]. | en |
| dc.references | World Steel Association (2021), Steel industry co-products, https://worldsteel.org/wp-content/uploads/Fact-sheet-Steel-industry-co-products.pdf [accessed: 25.01.2025]. | en |
| dc.references | World Wide Fund for Nature (2021), Driven to waste: The global impact of food loss and waste on farms, https://wwf.panda.org/discover/our_focus/food_practice/food_loss_and_waste/driven_to_waste_global_food_loss_on_farms/ [accessed: 5.02.2025]. | en |
| dc.references | Yang Y., Ingwersen W.W., Hawkins T.R., Srocka M., Meyer D.E. (2017), USEEIO: A new and transparent United States environmentally-extended input-output model, “Journal of Cleaner Production”, vol. 158, pp. 308–318, https://doi.org/10.1016/j.jclepro.2017.04.150 | en |
| dc.references | Zhang Y., Wang L., Li X., Chen J. (2023), A comprehensive review of toxicity of coal fly ash and its leachate in aquatic environment, “Ecotoxicology and Environmental Safety”, vol. 256, 114879, https://doi.org/10.1016/j.ecoenv.2023.114879 | en |
| dc.contributor.authorEmail | kgacek963@gmail.com | |
| dc.identifier.doi | 10.18778/0208-6018.371.01 | |
| dc.relation.volume | 2 | |