Pokaż uproszczony rekord

dc.contributor.authorGacek, Kamil
dc.date.accessioned2025-11-25T14:50:04Z
dc.date.available2025-11-25T14:50:04Z
dc.date.issued2025-07-08
dc.identifier.issn0208-6018
dc.identifier.urihttp://hdl.handle.net/11089/56776
dc.description.abstractThis study examines the evolution of industrial waste generation within the Polish economy over the decade of 2010–2020. Rapid economic growth, structural shifts among sectors, and growing environmental awareness have influenced waste production patterns. While numerous studies have addressed related topics in other contexts, a gap remains in assessing how technological changes and shifts in final demand jointly shape industrial waste generation in Poland.The article aims to investigate how changes in technology and final demand affected the volume and composition of waste in the Polish economy, thereby providing insights for policymakers and stakeholders seeking to enhance sustainability and resource efficiency.The research uses Environmental Extended Input-Output (EEIO) models combined with Structural Decomposition Analysis (SDA). Using Input-Output tables for Poland from 2010 and 2020 along with waste generation data aggregated into 17 sectoral clusters, the study decomposes changes in waste output into waste intensity, technological shifts, and final demand components. Further disaggregation captures the effects of product-mix adjustments, changes in demand composition, and sector-specific technological innovations.Results show that final demand is the dominant driver of increased waste generation. Technological changes produced mixed effects across sectors: the Electricity, Gas, Steam and Air Conditioning Supply sector recorded the largest reduction in waste generation, while the Waste Collection, Treatment and Disposal Activities; Materials Recovery sector experienced a significant increase. Additionally, Mining and Quarrying along with Construction played key roles, with the former undergoing notable technology-driven shifts, and the latter influenced by adjustments in both technology and final demand. These insights provide policymakers with a valuable reference for targeted waste reduction strategies while enhancing the understanding of how economic dynamics and technological progress shape environmental sustainability.en
dc.description.abstractCelem artykułu jest zbadanie, w jaki sposób zmiany technologiczne oraz zmiany w popycie finalnym wpłynęły na wielkość i strukturę odpadów przemysłowych w Polsce w latach 2010–2020. Zastosowane zostały rozszerzone modele przepływów międzygałęziowych w połączeniu z analizą dekompozycji strukturalnej. Z wykorzystaniem tablic przepływów międzygałęziowych dla lat 2010 i 2020 oraz danych o wytwarzaniu odpadów, zagregowanych w 17 klastrów sektorowych, rozłożono zmiany w ilości generowanych odpadów na składniki intensywności odpadowej, postęp techniczny i ewolucję popytu finalnego wraz z ich dalszym podziałem. Wyniki wskazują, że głównym czynnikiem wzrostu wytwarzania odpadów był rosnący popyt finalny, natomiast wpływ zmian technologicznych był zróżnicowany – sektor wytwarzania i zaopatrzenia w energię elektryczną, gaz, parę i klimatyzację odnotował największy spadek odpadów, podczas gdy sektor gospodarki odpadami wyraźnie je zwiększył. Górnictwo i wydobywanie oraz budownictwo odegrały kluczową rolę: pierwsze dzięki zmianom technologicznym, drugie poprzez połączone efekty technologii i popytu. Otrzymane wnioski dostarczają podstaw do projektowania ukierunkowanych strategii redukcji odpadów i pogłębiają zrozumienie zależności między dynamiką gospodarczą, postępem technologicznym a zrównoważonym rozwojem.pl
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesActa Universitatis Lodziensis. Folia Oeconomica;371en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subjectInput-Output modelsen
dc.subjectwaste generationen
dc.subjectLeontief modelsen
dc.subjectstructural decomposition analysisen
dc.subjectodpady przemysłowepl
dc.subjectmodele przepływów międzygałęziowychpl
dc.subjectmodele Leontiefapl
dc.subjectdekompozycja strukturalnapl
dc.titleIndustrial Waste in Poland (2010–2020): A Sectoral View Using Input-Output Models and Structural Decomposition Analysisen
dc.title.alternativeOdpady przemysłowe w Polsce w latach 2010–2020: ujęcie sektorowe z wykorzystaniem modeli przepływów międzygałęziowych i dekompozycji strukturalnejpl
dc.typeArticle
dc.page.number1-24
dc.contributor.authorAffiliationAGH University of Krakow, Polanden
dc.identifier.eissn2353-7663
dc.referencesBajpai P. (2015), Generation of Waste in Pulp and Paper Mills, [in:] P. Bajpai, Management of Pulp and Paper Mill Waste, Springer, Cham–Heidelberg–New York–Dordrecht–London, pp. 9–17, https://doi.org/10.1007/978-3-319-11788-1_2en
dc.referencesBisello A., Vettorato D., Ludlow D., Baranzelli C. (eds.) (2021), Smart and Sustainable Planning for Cities and Regions: Results of SSPCR 2019 – Open access contributions, Springer, Cham, https://doi.org/10.1007/978-3-030-57764-3en
dc.referencesBrodny J., Tutak M. (2022), Challenges of the Polish coal mining industry in its way to innovative and sustainable development, “Journal of Cleaner Production”, vol. 375, 134061, https://doi.org/10.1016/j.jclepro.2022.134061en
dc.referencesCiuła J., Bajdur W., Gronba-Chyla A., Kwaśnicki P. (2023), Transformation of Municipal Waste Management in Poland Towards a Circular Economy, “Rocznik Ochrona Środowiska”, vol. 25, pp. 374–382, https://doi.org/10.54740/ros.2023.038en
dc.referencesDepczyński R. (2022), The assessment of product groups and efficiency in the use of raw materials and waste management towards sustainable development – case study of the steel manufacturing company in Poland, “Procedia Computer Science”, vol. 207, pp. 4306–4317, https://doi.org/10.1016/j.procs.2022.09.494en
dc.referencesDietzenbacher E., Los B. (1998), Structural decomposition techniques: sense and sensitivity, “Economic Systems Research”, vol. 10(4), pp. 307–324, https://doi.org/10.1080/09535319800000023en
dc.referencesDomini M., Bertanza G., Vahidzadeh R., Pedrazzani R. (2022), Sewage Sludge Quality and Management for Circular Economy Opportunities in Lombardy, “Applied Sciences”, vol. 12(20), 10391, https://doi.org/10.3390/app122010391en
dc.referencesEl-Haggar S.M. (2007), Sustainable Industrial Design and Waste Management: Cradle-to-cradle for Sustainable Development, Burlington: Academic Press, https://doi.org/10.1016/B978-0-12-373623-9.X5000-Xen
dc.referencesEuropean Environment Agency (2022), Early warning assessment related to the 2025 targets for municipal waste and packaging waste: Poland country profile, https://www.eea.europa.eu/publications/many-eu-member-states/poland/view [accessed: 20.01.2025].en
dc.referencesEurostat (2024a), Generation of waste by waste category, hazardousness and NACE Rev. 2 activity (env_wasgen), https://doi.org/10.2908/env_wasgenen
dc.referencesEurostat (2024b), Waste electrical and electronic equipment (WEEE) statistics, https://ec.europa.eu/eurostat/databrowser/view/env_waseleeos/default/table?lang=en [accessed: 13.02.2025].en
dc.referencesFernández-Arias P., Vergara D., Antón-Sancho Á. (2023), Global Review of International Nuclear Waste Management, “Energies”, vol. 16(17), 6215, https://doi.org/10.3390/en16176215en
dc.referencesFilimonau V., De Coteau D.A. (2020), Food waste in hospitality and food services: A systematic literature review, “Journal of Cleaner Production”, vol. 270, 122861, https://doi.org/10.1016/j.jclepro.2020.122861en
dc.referencesGacek K. (2024), Tracing the drivers of waste generation in Poland (2010–2018): a structural decomposition and input–output approach, “Bulletin of Geography. Socio-economic Series”, no. 63, pp. 75–85, https://doi.org/10.12775/bgss-2024-0006en
dc.referencesGawlik L., Mokrzycki E. (2019), Changes in the Structure of Electricity Generation in Poland in View of the EU Climate Package, “Energies”, vol. 12(17), 3323, https://doi.org/10.3390/en12173323en
dc.referencesGrodzińska-Jurczak, M. (2001), Management of industrial and municipal solid wastes in Poland, “Resources, Conservation and Recycling”, vol. 32(2), pp. 85–103, https://doi.org/10.1016/S0921-3449(00)00097-5en
dc.referencesHe H., Reynolds Ch.J., Zhou Z., Wang Y., Boland J. (2019), Changes of waste generation in Australia: Insights from structural decomposition analysis, “Waste Management”, vol. 83, pp. 142–150, https://doi.org/10.1016/j.wasman.2018.11.004en
dc.referencesHuang B., Wang X., Kua H., Geng Y., Bleischwitz R., Ren J. (2018), Construction and demolition waste management in China through the 3R principle, “Resources, Conservation and Recycling”, vol. 129, pp. 36–44, https://doi.org/10.1016/j.resconrec.2017.09.029en
dc.referencesKęps W., Jaszczura K. (2020), Instalacje termicznego przekształcania odpadów w Polsce, “Inżynieria Mineralna”, vol. 1(1), pp. 47–50, https://doi.org/10.29227/IM-2020-01-07en
dc.referencesKGHM Polska Miedź S.A. (2011), Raport roczny za rok 2010, https://kghm.com/pl/raport-roczny-za-rok-2010 [accessed: 28.01.2025].en
dc.referencesKGHM Polska Miedź S.A. (2021), Zintegrowany Raport Roczny 2020, https://kghm.com/pl/zintegrowany-raport-roczny-2020 [accessed: 28.01.2025].en
dc.referencesLach Ł. (2022), Optimization based structural decomposition analysis as a tool for supporting environmental policymaking, “Energy Economics”, vol. 115, 106332, https://doi.org/10.1016/j.eneco.2022.106332en
dc.referencesLee D., Kim J., Park H.-S. (2022), Characterization of industrial hazardous waste generation in South Korea using input-output approach, “Resources, Conservation and Recycling”, vol. 183, 106365, https://doi.org/10.1016/j.resconrec.2022.106365en
dc.referencesLins M., Zandonadi R.P., Raposo A., Ginani V.C. (2021), Food Waste on Foodservice: An Overview Through the Perspective of Sustainable Dimensions, “Foods”, vol. 10(6), 1175, https://doi.org/10.3390/foods10061175en
dc.referencesLiu J., Wang R., Tian Y., Zhang M. (2024), The driving mechanisms of industrial air pollution spatial correlation networks: A case study of 168 Chinese cities, “Journal of Cleaner Production”, vol. 470, 143255, https://doi.org/10.1016/j.jclepro.2024.143255en
dc.referencesMarszał K., Śniegocki A., Wetmańska Z., Kachi A., Cochran I., Hainaut H., Ledez M. (2020), Renowacja. Panorama niskoemisyjnych inwestycji w sektorze budynków, https://wise-europa.eu/wp-content/uploads/2024/06/Renowacja.-Panorama-niskoemisyjnych-inwestycji-w-sektorze-budynkow.pdf [accessed: 8.01.2025].en
dc.referencesMarszowski R., Iwaszenko S. (2021), Mining in Poland in Light of Energy Transition: Case Study of Changes Based on the Knowledge Economy, “Sustainability”, vol. 13(24), 13649, https://doi.org/10.3390/su132413649en
dc.referencesMeyer D.E., Li M., Ingwersen W.W. (2020), Analyzing economy-scale solid waste generation using the United States environmentally-extended input-output model, “Resources, Conservation and Recycling”, vol. 157, 104795, https://doi.org/10.1016/j.resconrec.2020.104795en
dc.referencesMidor K., Michalski K. (eds.) (2015), Górnictwo węgla kamiennego. Inteligentne rozwiązania, Wydawnictwo P.A. NOVA S.A., Gliwice, http://www.stegroup.pl/attachments/article/1/Caly2.pdf [accessed: 18.02.2025].en
dc.referencesMillati R., Cahyono R.B., Ariyanto T., Azzahrani I.N., Putri R.U., Taherzadeh M.J. (2019), Agricultural, Industrial, Municipal, and Forest Wastes: An Overview, [in:] M.J. Taherzadeh, K. Bolton, J. Wong, A. Pandey (eds.), Sustainable Resource Recovery and Zero Waste Approaches, Elsevier, Amsterdam, pp. 1–22, https://doi.org/10.1016/B978-0-444-64200-4.00001-3en
dc.referencesMiller R.E., Blair P.D. (2022), Input-Output Analysis: Foundations and Extensions, Cambridge University Press, New York, https://doi.org/10.1017/9781108676212en
dc.referencesMostaghimi K., Behnamian J. (2023), Waste minimization towards waste management and cleaner production strategies: A literature review, “Environmental Development and Sustainability”, vol. 25(11), pp. 12119–12166, https://doi.org/10.1007/s10668-022-02599-7en
dc.referencesNakamura S., Kondo Y. (2002), Input-Output Analysis of Waste Management, “Journal of Industrial Ecology”, vol. 6(1), pp. 39–63, https://doi.org/10.1162/108819802320971632en
dc.referencesNkuna R., Ijoma G.N., Matambo T.S., Chimwani N. (2022), Accessing Metals from Low-Grade Ores and the Environmental Impact Considerations: A Review of the Perspectives of Conventional versus Bioleaching Strategies, “Minerals”, vol. 12(5), 506, https://doi.org/10.3390/min12050506en
dc.referencesOlejnik D., Krupa M. (2023), Selected Thermal Waste Treatment Plants in Europe: Case Study, “Civil and Environmental Engineering Reports”, vol. 33(3), pp. 1–18, https://doi.org/10.59440/ceer/175240en
dc.referencesPactwa K., Woźniak J., Dudek M. (2020), Coal mining waste in Poland in reference to circular economy principles, “Fuel”, vol. 270, 117493, https://doi.org/10.1016/j.fuel.2020.117493en
dc.referencesPohl H.R., Tarkowski S., Buczynska A., Fay M., De Rosa C.T. (2008), Chemical exposures at hazardous waste sites: Experiences from the United States and Poland, “Environmental Toxicology and Pharmacology”, vol. 25(3), pp. 283–291, https://doi.org/10.1016/j.etap.2007.12.005en
dc.referencesRead Q.D., Brown S., Cuéllar A.D., Finn S.M., Gephart J.A., Marston L.T., Meyer E., Weitz K.A., Muth M.K. (2020), Assessing the environmental impacts of halving food loss and waste along the food supply chain, “Science of The Total Environment”, vol. 712, 136255, https://doi.org/10.1016/j.scitotenv.2019.136255en
dc.referencesRiesenegger L., Hübner A. (2022), Reducing Food Waste at Retail Stores – An Explorative Study, “Sustainability”, vol. 14(5), 2494, https://doi.org/10.3390/su14052494en
dc.referencesRuiz-Peñalver S.M., Rodríguez M., Camacho J.A. (2019), A waste generation input output analysis: The case of Spain, “Journal of Cleaner Production”, vol. 210, pp. 1475–1482, https://doi.org/10.1016/j.jclepro.2018.11.145en
dc.referencesSantucci L., Carol E., Tanjal C. (2018), Industrial waste as a source of surface and groundwater pollution for more than half a century in a sector of the Río de la Plata coastal plain (Argentina), “Chemosphere”, vol. 206, pp. 727–735, https://doi.org/10.1016/j.chemosphere.2018.05.084en
dc.referencesSong J., Yang W., Li Z., Higano Y., Wang X. (2016), Discovering the energy, economic and environmental potentials of urban wastes: An input–output model for a metropolis case, “Energy Conversion and Management”, vol. 114, pp. 168–179, https://doi.org/10.1016/j.enconman.2016.02.014en
dc.referencesStatistics Poland (2015), Input-output table at basic prices in 2010, https://stat.gov.pl/en/topics/national-accounts/annual-national-accounts/input-output-table-at-basic-prices-in-2015,5,3.html [accessed: 14.12.2024].en
dc.referencesStatistics Poland (2021a), Energia ze źródeł odnawialnych w 2020 r., https://stat.gov.pl/download/gfx/portalinformacyjny/pl/defaultaktualnosci/5485/10/4/1/energia_ze_zrodel_odnawialnych_w_2020_r..pdf [accessed: 21.01.2025].en
dc.referencesStatistics Poland (2021b), Produkcja budowlano-montażowa w 2020 roku, https://stat.gov.pl/obszary-tematyczne/przemysl-budownictwo-srodki-trwale/budownictwo/produkcja-budowlano-montazowa-w-2020-roku,12,6.html (accessed: January 21.01.2025).en
dc.referencesStatistics Poland (2023), Environment 2023, https://stat.gov.pl/en/topics/environment-energy/environment/environment-2023,1,15.html [accessed: 14.12.2024].en
dc.referencesStatistics Poland (2024), Input-output table at basic prices in 2020, https://stat.gov.pl/en/topics/national-accounts/annual-national-accounts/input-output-table-at-basic-prices-in-2020,5,4.html [accessed: 14.12.2024].en
dc.referencesTowa E., Zeller V., Achten W.M.J. (2020), Input-output models and waste management analysis: A critical review, “Journal of Cleaner Production”, vol. 249, 119359, https://doi.org/10.1016/j.jclepro.2019.119359en
dc.referencesU.S. Environmental Protection Agency (2020), Advancing Sustainable Materials Management: 2018 Fact Sheet, https://www.epa.gov/sites/default/files/2021-01/documents/2018_ff_fact_sheet_dec_2020_fnl_508.pdf [accessed: 11.12.2024].en
dc.referencesWorld Steel Association (2021), Steel industry co-products, https://worldsteel.org/wp-content/uploads/Fact-sheet-Steel-industry-co-products.pdf [accessed: 25.01.2025].en
dc.referencesWorld Wide Fund for Nature (2021), Driven to waste: The global impact of food loss and waste on farms, https://wwf.panda.org/discover/our_focus/food_practice/food_loss_and_waste/driven_to_waste_global_food_loss_on_farms/ [accessed: 5.02.2025].en
dc.referencesYang Y., Ingwersen W.W., Hawkins T.R., Srocka M., Meyer D.E. (2017), USEEIO: A new and transparent United States environmentally-extended input-output model, “Journal of Cleaner Production”, vol. 158, pp. 308–318, https://doi.org/10.1016/j.jclepro.2017.04.150en
dc.referencesZhang Y., Wang L., Li X., Chen J. (2023), A comprehensive review of toxicity of coal fly ash and its leachate in aquatic environment, “Ecotoxicology and Environmental Safety”, vol. 256, 114879, https://doi.org/10.1016/j.ecoenv.2023.114879en
dc.contributor.authorEmailkgacek963@gmail.com
dc.identifier.doi10.18778/0208-6018.371.01
dc.relation.volume2


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by/4.0