| dc.contributor.author | Kalinowski, Jacek | |
| dc.contributor.author | Kalinowski, Piotr | |
| dc.date.accessioned | 2025-11-28T08:44:36Z | |
| dc.date.available | 2025-11-28T08:44:36Z | |
| dc.date.issued | 2025-11-28 | |
| dc.identifier.citation | Kalinowski J., Kalinowski P., Artificial Intelligence in Accounting: What the past and present mean for the future, Wydawnictwo Uniwersytetu Łódzkiego, Lodz 2025, https://doi.org/10.18778/8331-880-6 | en |
| dc.identifier.isbn | 978-83-8331-879-0 | |
| dc.identifier.uri | http://hdl.handle.net/11089/56793 | |
| dc.description.abstract | The monograph is a guide to the world of AI in accounting. Starting from the Neolithic Revolution, through the Metal Age, up to computers and generative models, the authors lead the reader through the complex world of technology and finance. The aim of this monograph is to analyse how AI and generative models affect accounting, evaluating practical opportunities and risks. The authors outline the history that shaped accounting tools and today's views of new technologies and consider their implications for the profession's future. They also systematize and clarify core AI and generative-model concepts to help practitioners apply them in daily work. The research methods of this work include: a review of the literature, historical analysis, and numerous case studies from practice. The results of the research presented in the monograph include a description of the impact of AI on the technological and behavioral dimensions of accounting processes. The authors explain how the role of accountants is shifting from record-keeping toward expert analysis and advisory functions. However, the effective implementation of AI tools requires appropriate standards that cover the control of processed data and the continuous improvement of accountants’ qualifications. Equally important is the adherence to proper ethical standards in the use of AI in accounting. It should be remembered that AI is a tool that supports humans and enhances the efficiency of their work but does not replace them. A unique feature of the monograph is that it combines historical contexts with practice, distinguishing lasting patterns from temporary innovations, offering examples of ready-made AI solutions in accounting, and providing a synthesis of these issues for practitioners and educators. | en |
| dc.description.abstract | Monografia jest przewodnikiem po świecie SI w rachunkowości. Począwszy od czasów Rewolucji Neolitycznej, przez Epokę Metalu, aż po komputery i modele generatywne autorzy prowadzą czytelnika przez złożony świat technologii i finansów. Celem monografii jest analiza tego jak sztuczna inteligencja i modele generatywne wpływają na rachunkowość, oceniając praktyczne szanse i ryzyka. Autorzy śledzą historyczne czynniki, które ukształtowały narzędzia rachunkowości i dzisiejsze postrzeganie nowych technologii oraz rozważają ich konsekwencje dla przyszłości zawodu. Systematyzują i wyjaśniają także kluczowe pojęcia dotyczące sztucznej inteligencji i modeli generatywnych, aby pomóc praktykom stosować je w codziennej pracy. W pracy zastosowano takie metody badawcze jak: przegląd literatury, analiza historyczna i liczne studia przypadków z praktyki. Wynikiem przeprowadzonych w monografii badań jest opis wpływu SI na wymiar technologiczny i behawioralny w procesach rachunkowości. Autorzy objaśniają jak rola księgowych przesuwa się od ewidencji ku analizie eksperckiej i doradztwu. Skuteczne wdrożenia narzędzi AI wymagają jednak odpowiednich standardów obejmujących kontrolę przetwarzanych danych oraz ciągłego podnoszenia kwalifikacji księgowych. Równie istotnym czynnikiem jest także zachowanie właściwych norm etycznych przy wykorzystaniu SI w rachunkowości. Należy pamiętać o tym, że jest to narzędzie, które wspomaga człowieka i zwiększa efektywność jego pracy, ale go nie zastępuje. Unikalną cechą monografii jest to, że łączy uwarunkowania historyczne z praktyką, oddzielając trwałe wzorce od tymczasowych innowacji, oferując przykłady gotowych rozwiązań SI w rachunkowości oraz syntezę tych zagadnień dla praktyków i edukatorów. | pl |
| dc.language.iso | en | |
| dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.subject | sztuczna inteligencja w rachunkowości | pl |
| dc.subject | generatywna sztuczna inteligencja (GenAI) | pl |
| dc.subject | robotyzacja procesów (RPA) w rachunkowości | pl |
| dc.subject | uczenie maszynowe (ML) w rachunkowości | pl |
| dc.subject | przetwarzanie języka naturalnego (NLP) w rachunkowości | pl |
| dc.subject | artificial intelligence in accounting | en |
| dc.subject | generative artificial intelligence (GenAI) | en |
| dc.subject | robotic process automation (RPA) in accounting | en |
| dc.subject | machine learning (ML) in accounting | en |
| dc.subject | natural language processing (NLP) in accounting | en |
| dc.title | Artificial Intelligence in Accounting: What the past and present mean for the future | en |
| dc.title.alternative | Artificial Intelligence in Accounting: What the past and present mean for the future | pl |
| dc.type | Book | |
| dc.page.number | 117 | |
| dc.contributor.authorAffiliation | Kalinowski, Jacek - University of Lodz, Faculty of Management, Department of Accounting | en |
| dc.contributor.authorAffiliation | Kalinowski, Piotr - University of Lodz, Faculty of Management, Department of Accounting | en |
| dc.identifier.eisbn | 978-83-8331-880-6 | |
| dc.references | Abbas, K. (2025). Management Accounting and Artificial Intelligence: A Comprehensive Literature Review and Recommendations for Future Research. The British Accounting Review, 101551. https://doi.org/10.1016/J.BAR.2025.101551 | en |
| dc.references | ABBYY. (2023). ABBYY FlexiCapture 12 Release Notes and Documentation. ABBYY. https://www.abbyy.com/en-us/flexicapture/ | en |
| dc.references | Adamopoulou, E., & Moussiades, L. (2020). Chatbots: History, Technology, and Applications. Machine Learning with Applications, 2, 100006. https://doi.org/10.1016/j.mlwa.2020.100006 | en |
| dc.references | Agassi, J., & Weizenbaum, J. (1976). Computer Power and Human Reason: From Judgment to Calculation. Technology and Culture, 17(4), 813. https://doi.org/10.2307/3103715 | en |
| dc.references | Andreassen, R.-I. (2020). Digital Technology and Changing Roles: A Management Accountant’s Dream or Nightmare? Journal of Management Control, 31(3), 209–238. https://doi.org/10.1007/s00187-020-00303-2 | en |
| dc.references | Annepaka, Y., & Pakray, P. (2025). Large Language Models: A Survey of Their Development, Capabilities, and Applications. Knowledge and Information Systems, 67(3), 2967– 3022. https://doi.org/10.1007/s10115-024-02310-4 | en |
| dc.references | Anthropic. (2025, May 22). Introducing Claude 4. https://www.anthropic.com/news/claude-4?utm_source=chatgpt.com | en |
| dc.references | Appelbaum, D., Kogan, A., Vasarhelyi, M., & Yan, Z. (2017). Impact of Business Analytics and Enterprise Systems on Managerial Accounting. International Journal of Accounting Information Systems, 25, 29–44. https://doi.org/10.1016/J.ACCINF.2017.03.003 | en |
| dc.references | Aristotle. (1998). Prior Analytics. Generic NL Freebook Publisher. https://research.ebsco.com/linkprocessor/plink?id=d1466c25-0fdd-3163-8ec2-f187a03db35b | en |
| dc.references | Bank of America. (2024, April 8). BofA’s Erica Surpasses 2 Billion Interactions, Helping 42 Million Clients Since Launch. https://newsroom.bankofamerica.com/content/newsroom/press-releases/2024/04/bofa-s-erica-surpasses-2-billion-interactions--helping-42-millio.html | en |
| dc.references | Bennett, N., & Lemoine, G. J. (2014). What VUCA Really Means for You. https://hbr.org/2014/01/what-vuca-really-means-for-you | en |
| dc.references | Bertomeu, J., Cheynel, E., Floyd, E., & Pan, W. (2021). Using Machine Learning to Detect Misstatements. Review of Accounting Studies, 26(2), 468–519. https://doi.org/10.1007/s11142-020-09563-8 | en |
| dc.references | Board of Governors of the Federal Reserve System. (2007). Report to the Congress on Credit Scoring and Its Effects on the Availability and Affordability of Credit. https://www.federalreserve.gov/boarddocs/rptcongress/creditscore/default.htm | en |
| dc.references | Brynjolfsson, E., & McAfee, A. (2014). The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies. W. W. Norton & Company. https://research.ebsco.com/linkprocessor/plink?id=eac1c5a4-b034-33a4-b396-b03e3795b75f | en |
| dc.references | Buchanan, B. G. (2005). A (Very) Brief History of Artificial Intelligence. AI Magazine, 26(4), 53. https://doi.org/10.1609/aimag.v26i4.1848 | en |
| dc.references | Cajori, F. (1893). A History of Mathematics. www.gutenberg.org | en |
| dc.references | Calderon, T. G., Gao, L., & Cardoso, R. L. (2023). Generative Artificial Intelligence in the Classroom: A Financial Accounting Experience. In Advances in Accounting Education: Teaching and Curriculum Innovations, 125–144. Emerald Publishing Limited. https://doi.org/10.1108/s1085-462220230000027006 | en |
| dc.references | Campbell, M., Hoane, A. J., & Hsu, F. H. (2002). Deep Blue. Artificial Intelligence, 134(1–2), 57–83. https://doi.org/10.1016/S0004-3702(01)00129-1 | en |
| dc.references | Campbell-Kelly, M., Aspray, W., Ensmenger, N., & Yost, J. R. (2018). Computer. A History of the Information Machine. Routledge. https://doi.org/10.4324/9780429495373 | en |
| dc.references | Ceruzzi, P. E. (2003). A History of Modern Computing. MIT Press. | en |
| dc.references | Cleverboat. (2025). Cleverbot.com – A Clever Bot – Speak to an AI with Some Actual Intelligence? https://www.cleverbot.com/ | en |
| dc.references | Cognizant. (2020). Global Manufacturer Streamlines Accounts Payable with RPA. Cognizant Technology Solutions. https://www.cognizant.com | en |
| dc.references | Colby, K. M., Hilf, F. D., Weber, S., & Kraemer, H. C. (1972). Turing-like Indistinguishability Tests for the Validation of a Computer Simulation of Paranoid Processes. Artificial Intelligence, 3(C), 199–221. https://doi.org/10.1016/0004-3702(72)90049-5 | en |
| dc.references | Colby, K. M., Weber, S., & Hilf, F. D. (1971). Artificial Paranoia. Artificial Intelligence, 2. Colombo, V. L. B., & Beuren, I. M. (2023). Accountants Robots in Shared Service Centers: | en |
| dc.references | Effects of the Culture for Innovation, Work Engagement and Performance Measurement System. Journal of Business & Industrial Marketing, 38(12), 2760–2771. https://doi.org/10.1108/JBIM-09-2022-0436 | en |
| dc.references | Costa, P. (2018). Conversing with Personal Digital Assistants: On Gender and Artificial Intelligence. Journal of Science and Technology of the Arts, 10(3 Special Issue), 59–72. https://doi.org/10.7559/citarj.v10i3.563 | en |
| dc.references | Dechow, N., Granlund, M., & Mouritsen, J. (2006). Management Control of the Complex Organization: Relationships between Management Accounting and Information Technology. Handbooks of Management Accounting Research, 2, 625–640. https://doi.org/10.1016/S1751-3243(06)02007-4 | en |
| dc.references | DigitalDefynd Team. (2025). 15 Financial Analytics Case Studies [2025] – DigitalDefynd. https://digitaldefynd.com/IQ/financial-analytics-case-studies/ | en |
| dc.references | Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Edwards, J., Eirug, A., Galanos, V., Ilavarasan, P. V., Janssen, M., Jones, P., Kar, A. K., Kizgin, H., Kronemann, B., Lal, B., Lucini, B., … Williams, M. D. (2021). Artificial Intelligence (AI): Multidisciplinary Perspectives on Emerging Challenges, Opportunities, and Agenda for Research, Practice and Policy. International Journal of Information Management, 57, 101994. https://doi.org/10.1016/J.IJINFOMGT.2019.08.002 | en |
| dc.references | Encyclopædia Britannica. (2025). William Seward Burroughs | Biography, Adding Machine, & Facts. https://www.britannica.com/biography/William-Seward-Burroughs | en |
| dc.references | Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2020). Generative Adversarial Networks. Communications of the ACM, 63(11), 139–144. https://doi.org/10.1145/3422622 | en |
| dc.references | Granlund, M. (2011). Extending AIS Research to Management Accounting and Control Issues: A Research Note. International Journal of Accounting Information Systems, 12(1), 3–19. https://doi.org/10.1016/J.ACCINF.2010.11.001 | en |
| dc.references | Granlund, M., & Mouritsen, J. (2003). Special Section on Management Control and New Information Technologies. European Accounting Review, 12(1), 77–83. https://doi.org/10.1080/0963818031000087925 | en |
| dc.references | Greenman, C., Esplin, D., Johnston, R., & Richards, J. (2024). An Analysis of the Impact of Artificial Intelligence on the Accounting Profession. Journal of Accounting, Ethics & Public Policy (JAEPP), 25(2), 188–203. https://doi.org/10.60154/jaepp.2024.v25n2p188 | en |
| dc.references | Grewal, D. S. (2014). A Critical Conceptual Analysis of Definitions of Artificial Intelligence as Applicable to Computer Engineering. IOSR Journal of Computer Engineering (IOSRJCE), 16(2), Ver. 1 (Mar–Apr.), 9–13. https://doi.org/10.9790/0661-16210913 | en |
| dc.references | Hamdan, A., Hassanien, A. E., Razzaque, A., & Alareeni, B. (Eds.) (2021). The Fourth Industrial Revolution: Implementation of Artificial Intelligence for Growing Business Success. Springer. https://doi.org/10.1007/978-3-030-62796-6 | en |
| dc.references | Hasan, A. R. (2022). Artificial Intelligence (AI) in Accounting&Auditing: A Literature Review. Open Journal of Business and Management, 10(01), 440–465. https://doi.org/10.4236/ojbm.2022.101026 | en |
| dc.references | Heiser, J. F., Colby, K. M., Faught, W. S., & Parkison, R. C. (1979). Can Psychiatrists Distinguish a Computer Simulation of Paranoia from the Real Thing?: The Limitations of Turing-Like Tests as Measures of the Adequacy of Simulations. Journal of Psychiatric Research, 15(3), 149–162. https://doi.org/10.1016/0022-3956(79)90008-6 | en |
| dc.references | Hemati, H., Schreyer, M., & Borth, D. (2021). Continual Learning for Unsupervised Anomaly Detection in Continuous Auditing of Financial Accounting Data. https://research.ebsco.com/linkprocessor/plink?id=96dfdfd2-5285-3c19-9a24-4532aeab7acb | en |
| dc.references | Henderson, P. (2025). Tipalti – ERP Q&A. https://tipalti.com/blog/erp-qa-with-paul-henderson-elvis-nti/ | en |
| dc.references | Hendler, J. (2008). Avoiding Another AI Winter. IEEE Intelligent Systems, 23(2), 2–4. https://doi.org/10.1109/MIS.2008.20 | en |
| dc.references | Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A Fast Learning Algorithm for Deep Belief Nets. Neural Computation, 18(7), 1527–1554. https://doi.org/10.1162/neco.2006.18.7.1527 | en |
| dc.references | Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735 | en |
| dc.references | Homerus (2019). Iliad (Ed. R. B. Rutherford). Cambridge University Press. https://research.ebsco.com/linkprocessor/plink?id=693c0794-4752-309f-95b1-530a06938ffc | en |
| dc.references | Honko, S., & Hendryk, M. (2024). The Role of AI in Accounting: Insights From Practitioners. European Research Studies Journal, XXVII(2), 989–1003. https://doi.org/10.35808/ersj/3863 | en |
| dc.references | Impact Insights. (2023, August 9). Top 5 Robotic Process Automation Case Studies. https://www.impactmybiz.com/blog/5-robotic-process-automation-case-studies/ | en |
| dc.references | Jarrahi, M. H. (2018). Artificial Intelligence and the Future of Work: Human-AI Symbiosis in Organizational Decision Making. Business Horizons, 61(4), 577–586. https://doi.org/10.1016/j.bushor.2018.03.007 | en |
| dc.references | Jędrzejka, D. (2019). Robotic Process Automation and Its Impact on Accounting. Zeszyty Teoretyczne Rachunkowości, 24(161), 137–166. https://doi.org/10.5604/01.3001.0013.6061 | en |
| dc.references | Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly Accurate Protein Structure Prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2 | en |
| dc.references | Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in My Hand: Who’s the Fairest in the Land? On the Interpretations, Illustrations, and Implications of Artificial Intelligence. Business Horizons, 62(1), 15–25. https://doi.org/10.1016/J.BUSHOR.2018.08.004 | en |
| dc.references | Karamatova, L. (2017). Management Accounting and ERP Systems. Factors behind the Choice of Information Systems when Exercising Management Accounting. https://www.diva-portal.org/smash/get/diva2:1107616/FULLTEXT01.pdf#page=2.11 | en |
| dc.references | Kofax, Inc. (2022). Kofax ReadSoft Online Technical Documentation. Kofax. https://www.kofax.com/Products/readsoft-online | en |
| dc.references | KPMG. (2024a). AI in Financial Reporting and Audit: Navigating the New Era – Global Survey Results. KPMG International. https://kpmg.com/NavigatingAIinAudit | en |
| dc.references | KPMG. (2024b). AI in Financial Reporting and Audit: Navigating the New Era – US Survey Results. KPMG LLP. https://kpmg.com/us/en/articles/2023/ai-and-financial-reporting-survey.html | en |
| dc.references | Kuźniacki, B., Almada, M., Tyliński, K., Górski, Ł., Winogradska, B., & Zeldenrust, R. (2022). Towards eXplainable Artificial Intelligence (XAI) in Tax Law: The Need for a Minimum Legal Standard. World Tax Journal, 14. https://doi.org/10.59403/2yhh9pa | en |
| dc.references | LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989). Backpropagation Applied to Handwritten Zip Code Recognition. Neural Computation, 1(4), 541–551. https://doi.org/10.1162/neco.1989.1.4.541 | en |
| dc.references | Lighthill, J., Sutherland, S., Needham, R., Longuet-Higgins, H. C., & Michie, D. (1998). Lighthill Report: Artificial Intelligence: A Paper Symposium. http://www.chilton-computing.org.uk/inf/literature/reports/lighthill_report/contents.htmhttp://www.aiai.ed.ac.uk/events/lighthill1973/ | en |
| dc.references | Lipton, Z. C. (2016). The Mythos of Model Interpretability. http://arxiv.org/abs/1606.03490 | en |
| dc.references | Mastercard. (2024, May 22). Mastercard Accelerates Card Fraud Detection with Generative AI Technology. https://www.mastercard.com/us/en/news-and-trends/press/2024/may/mastercard-accelerates-card-fraud-detection-with-generative-ai-technology.html | en |
| dc.references | Mayor, A. (2018). Gods and Robots: Myths, Machines, and Ancient Dreams of Technology. Princeton University Press. https://research.ebsco.com/linkprocessor/plink?id=d771d60c-7c35-3292-8f1a-7a64b90368fe | en |
| dc.references | McCarthy, J. (2007). What is Artificial Intelligence? Unpublished manuscript. http://www-formal.stanford.edu/jmc/ | en |
| dc.references | McCorduck, P. (2004). Machines Who Think. A K Peters/CRC Press. https://doi.org/10.1201/9780429258985 | en |
| dc.references | McCulloch, W. S., & Pitts, W. (1943). A Logical Calculus of The Ideas Immanent in Nervous Activity. Bulletin of Mathematical Biology, 52(2). | en |
| dc.references | Minsky, M., & Papert, S. A. (2017). Perceptrons. MIT Press. https://doi.org/10.7551/mitpress/11301.001.0001 | en |
| dc.references | Moll, J., & Yigitbasioglu, O. (2019). The Role of Internet-Related Technologies in Shaping the Work of Accountants: New Directions for Accounting Research. The British Accounting Review, 51(6). https://doi.org/10.1016/j.bar.2019.04.002 | en |
| dc.references | Mura, R. (1995). Images of Mathematics Held by University Teachers of Mathematics Education. Educational Studies in Mathematics, 28(4), 385–399. https://doi.org/10.1007/BF01274080 | en |
| dc.references | Nilsson, N. J. (2010). The Quest for Artificial Intelligence: A History of Ideas and Achievements. Cambridge University Press. | en |
| dc.references | Noto, G. (2023). Deloitte Brings GenAI to Audit, Accounting Professionals with New Bot. CFO Dive. https://www.cfodive.com/news/deloitte-brings-genai-internal-audit-accounting-professionals/699354/ | en |
| dc.references | Odonkor, B., Kaggwa, S., Uwaoma, P. U., Hassan, A. O., & Farayola, O. A. (2024). The Impact of AI on Accounting Practices: A Review: Exploring How Artificial Intelligence Is Transforming Traditional Accounting Methods and Financial Reporting. World Journal of Advanced Research and Reviews, 21, 172–188. https://doi.org/10.30574/wjarr.2024.21.1.2721 | en |
| dc.references | OECD. (2020). Tax Administration 3.0: The Digital Transformation of Tax Administration. https://doi.org/10.1787/CA274CC5-EN | en |
| dc.references | OECD. (2021). Tax Administration 2021. https://doi.org/10.1787/CEF472B9-EN | en |
| dc.references | Ozkaya, I. (2020). What Is Really Different in Engineering AI-Enabled Systems? IEEE Software, 37(4), 3–6. https://doi.org/10.1109/MS.2020.2993662 | en |
| dc.references | Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc. | en |
| dc.references | Peng, Y., Ahmad, S. F., Ahmad, A. Y. A. B., Al Shaikh, M. S., Daoud, M. K., & Alhamdi, F. M. H. (2023). Riding the Waves of Artificial Intelligence in Advancing Accounting and Its Implications for Sustainable Development Goals. Sustainability, 15, 14165. https://doi.org/10.3390/su151914165 | en |
| dc.references | Phua, C., Lee, V., Smith, K., & Gayler, R. (2010). A Comprehensive Survey of Data Mining-Based Fraud Detection Research. Artificial Intelligence Review. https://arxiv.org/abs/1009.6119 | en |
| dc.references | Pingili, R. (2025). AI-Driven Intelligent Document Processing for Banking and Finance. International Journal of Management & Entrepreneurship Research, 7(2), 98–109. https://doi.org/10.51594/ijmer.v7i2.1802 | en |
| dc.references | Plato. (2013). The Republic (Ed. C. D. C. Reeve). Hackett Publishing Company. https://archive.org/details/republic0000plat_k3m1 | en |
| dc.references | PriceWaterhouseCoopers. (2022). Automating Data Extraction with AI. PwC Global. https://www.pwc.com/gx/en/issues/artificial-intelligence/publications/ai-automation-data-extraction.html | en |
| dc.references | Rich, E., Knight, K., & Nair B, S. (1991). Artificial Intelligence (3rd ed.). McGraw-Hill. Richins, G., Stapleton, A., Stratopoulos, T. C., & Wong, C. (2017). Big Data Analytics: Opportunity or Threat for the Accounting Profession? Journal of Information Systems, 31(3), 63–79. https://doi.org/10.2308/isys-51805 | en |
| dc.references | Rosenblatt, F. (1962). Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. https://archive.org/details/principles-of-neurodynamics/page/n7/mode/2up | en |
| dc.references | Rossum. (2023). Rossum Product Overview & Technical Whitepaper. Rossum Ltd. https:// rossum.ai/product/ | en |
| dc.references | Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning Representations by Back-Propagating Errors. Nature, 323(6088), 533–536. https://doi.org/10.1038/323533a0 | en |
| dc.references | Russell, S., & Norvig, P. (2021). Artificial Intelligence. A Modern Approach. Fourth Edition Global Edition. Pearson. | en |
| dc.references | Santayana, G. (1927). The Life of Reason: Or, The Phases of Human Progress (Vol. 2). Charles Scribner’s Sons. https://babel.hathitrust.org/cgi/pt?id=osu.32435028551414&seq=6 | en |
| dc.references | Scapens, R. W., & Jazayeri, M. (2003). ERP Systems and Management Accounting Change: Opportunities or Impacts? A Research Note. European Accounting Review, 12(1), 201– 233. https://doi.org/10.1080/0963818031000087907 | en |
| dc.references | Schreyer, M., Sattarov, T., Borth, D., Dengel, A., & Reimer, B. (2017). Detection of Anomalies in Large Scale Accounting Data using Deep Autoencoder Networks. https://arxiv.org/abs/1709.05254 | en |
| dc.references | Sighn, M. P. (2023). (17) EY’s AI finds audit frauds. LinkedIn. https://www.linkedin.com/news/story/eys-ai-finds-audit-frauds-5567297/ | en |
| dc.references | Stancheva-Todorova, E., & Bogdanova, B. (2021). Enhancing Investors’ Decision-Making – An Interdisciplinary AI-Based Case Study for Accounting Students. In AIP Conference Proceedings. AIP Publishing. https://doi.org/10.1063/5.0041612 | en |
| dc.references | Sugden, K. E. (1981). History of the Abacus. Accounting Historians Journal, 8(2), 1–22. https://egrove.olemiss.edu/aah_journal/vol8/iss2/1 | en |
| dc.references | Tater, T., Gantayat, N., Dechu, S., Jagirdar, H., Rawat, H., Guptha, M., Gupta, S., Strąk, Ł., Kiran, S., & Narayanan, S. (2022). AI Driven Accounts Payable Transformation. Proceedings of the AAAI Conference on Artificial Intelligence, 36, 12405–12413. https://doi.org/10.1609/aaai.v36i11.21506 | en |
| dc.references | Turing, A. M. (1950). Computing Machinery and Intelligence. Mind, New Series, 59(236). http://www.jstor.org/stable/2251299 | en |
| dc.references | Unilever. (2025). Leading the Next Era of Corporate Sustainability. https://www.unilever.com/sustainability/ | en |
| dc.references | The Washington Post. (2024, March 4). TurboTax and H&R Block’s AI Chatbots Are Giving Bad Tax Advice. https://www.washingtonpost.com/technology/2024/03/04/ai-taxes-turbotax-hrblock-chatbot/ | en |
| dc.references | Wright, D., & Schaefer, G. (2022). Automation with Intelligence: Seventh Global Intelligent Automation Survey. Deloitte Insights. https://www2.deloitte.com/uk/en/pages/consulting/topics/robotic-and-intelligent-automation.html | en |
| dc.references | Xu, A., Liu, Z., Guo, Y., Sinha, V., & Akkiraju, R. (2017). A New Chatbot for Customer Service on Social Media. Conference on Human Factors in Computing Systems – Proceedings, 2017 May, 3506–3510. https://doi.org/10.1145/3025453.3025496 | en |
| dc.references | Yi, Z., Cao, X., Chen, Z., & Li, S. (2023). Artificial Intelligence in Accounting and Finance: Challenges and Opportunities. IEEE Access, 11, 129100–129123. https://doi.org/10.1109/ACCESS.2023.3333389 | en |
| dc.identifier.doi | 10.18778/8331-880-6 | |