| dc.contributor.author | Kamide, Norihiro | |
| dc.contributor.author | Negri, Sara | |
| dc.date.accessioned | 2025-12-12T15:22:21Z | |
| dc.date.available | 2025-12-12T15:22:21Z | |
| dc.date.issued | 2025-11-27 | |
| dc.identifier.issn | 0138-0680 | |
| dc.identifier.uri | http://hdl.handle.net/11089/56967 | |
| dc.description.abstract | A unified Gentzen-style proof-theoretic framework for until-free propositional linear-time temporal logic and its intuitionistic variant is introduced. The framework unifies Gentzen-style single-succedent sequent calculi and natural deduction systems for both the classical and intuitionistic versions of these temporal logics. Theorems establishing the equivalence between the proposed sequent calculi and natural deduction systems are proved. Furthermore, the cut-elimination theorems for the proposed sequent calculi and the normalization theorems for the proposed natural deduction systems are established. | en |
| dc.language.iso | en | |
| dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
| dc.relation.ispartofseries | Bulletin of the Section of Logic;2 | en |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
| dc.subject | linear-time temporal logic | en |
| dc.subject | intuitionistic linear-time temporal logic | en |
| dc.subject | sequent calculus | en |
| dc.subject | natural deduction | en |
| dc.subject | cut-elimination theorem | en |
| dc.subject | normalization theorem | en |
| dc.title | Unified Sequent Calculi and Natural Deduction Systems for Until-free Linear-time Temporal Logics | en |
| dc.type | Article | |
| dc.page.number | 227-282 | |
| dc.contributor.authorAffiliation | Kamide, Norihiro - Nagoya City University, School of Data Science | en |
| dc.contributor.authorAffiliation | Negri, Sara - University of Genoa, Department of Mathematics | en |
| dc.identifier.eissn | 2449-836X | |
| dc.references | A. Abuin, A. Bolotov, M. Hermo, P. Lucio, Tableaux and sequent calculi for CTL and ECTL: Satisfiability test with certifying proofs and models, Journal of Logical and Algebraic Methods in Programming 130, 100828, (2023), DOI: https://doi.org/10.1016/J.JLAMP.2022.100828 | en |
| dc.references | A. Almukdad, D. Nelson, Constructible falsity and inexact predicates, Journal of Symbolic Logic, vol. 49(1) (1984), pp. 231–233, DOI: https://doi.org/10.2307/2274105 | en |
| dc.references | S. Baratella, A. Masini, A proof-theoretic investigation of a logic of positions, Annals of Pure and Applied Logic, vol. 123 (2003), pp. 135–162, DOI: https://doi.org/10.1016/S0168-0072(03)00021-6 | en |
| dc.references | S. Baratella, A. Masini, An approach to infinitary temporal proof theory, Archive for Mathematical Logic, vol. 43(8) (2004), pp. 965–990, DOI: https://doi.org/10.1007/S00153-004-0237-Z | en |
| dc.references | Z.-E.-A. Benaissa, E. Moggi, W. Taha, T. Sheard, Logical modalities and multi-stage programming, [in:] Proceedings of Workshop on Intuitionistic Modal Logics and Applications (IMLA’99) (1999), 15 pp. | en |
| dc.references | A. Bolotov, A. Basukoski, O. M. Grigoriev, V. Shangin, Natural deduction calculus for linear-time temporal logic, [in:] Proceedings of the 10th European Conference on Logics in Artificial Intelligence (JELIA 2006), vol. 4160 of Lecture Notes in Computer Science (2006), pp. 56–68, DOI: https://doi.org/10.1007/11853886_7 | en |
| dc.references | A. Bolotov, V. Shangin, Natural deduction system in paraconsistent setting: Proof search for PCont, Journal of Intelligent Systems, vol. 21(1) (2012), pp. 1–24, DOI: https://doi.org/10.1515/JISYS-2011-0021 | en |
| dc.references | B. Boretti, S. Negri, Decidability for Priorean linear time using a fixed-point labelled calculus, [in:] Proceedings of the 18th International Conference on Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX), vol. 5607 of Lecture Notes in Computer Science (2009), pp. 108–122, DOI: https://doi.org/10.1007/978-3-642-02716-1_9 | en |
| dc.references | B. Boretti, S. Negri, On the finitization of Priorean linear time, [in:] M. D’Agostino, G. Giorello, F. Laudisa, T. Pievani, C. Sinigaglia (eds.), New Essays in Logic and Philosophy of Science, College Publications, London (2010), pp. 67–79. | en |
| dc.references | K. Brünnler, M. Lange, Cut-free sequent systems for temporal logic, Journal of Logical and Algebraic Methods in Programming, vol. 76(2) (2008), pp. 216–225, DOI: https://doi.org/10.1016/J.JLAP.2008.02.004 | en |
| dc.references | S. Cerrito, V. Goranko, S. Paillocher, Partial model checking and partial model synthesis in LTL using a Tableau-based approach, [in:] Proceedings of the 8th International Conference on Formal Structures for Computation and Deduction (FSCD) (2023), pp. 23:1–23:21, DOI: https://doi.org/10.4230/LIPICS.FSCD.2023.23 | en |
| dc.references | R. Davies, A Temporal-Logic Approach to Binding-Time Analysis, [in:] Proceedings of the 11th Annual IEEE Symposium on Logic in Computer Science (LICS), IEEE Computer Society (1996), pp. 184–195, DOI: https://doi.org/10.1109/LICS.1996.561317 | en |
| dc.references | R. Davies, F. Pfenning, A modal analysis of staged computation, Journal of the ACM, vol. 48(3) (2001), pp. 555–604, DOI: https://doi.org/10.1145/382780.382785 | en |
| dc.references | E. A. Emerson, Temporal and modal logic, Elsevier and MIT Press (1990), pp. 995–1072, DOI: https://doi.org/10.1016/B978-0-444-88074-1.50021-4 | en |
| dc.references | J. Gaintzarain, M. Hermo, P. Lucio, M. Navarro, F. Orejas, A cut-free and invariant-free sequent calculus for PLTL, vol. 4646 of Lecture Notes in Computer Science, Springer (2007), pp. 481–495, DOI: https://doi.org/10.1007/978-3-540-74915-8_36 | en |
| dc.references | Y. Gurevich, Intuitionistic logic with strong negation, Studia Logica, vol. 36 (1977), pp. 49–59. | en |
| dc.references | S. Huang, R. Cleaveland, A tableau construction for finite linear-time temporal logic, Journal of Logical and Algebraic Methods in Programing, vol. 125 (2022), p. 100743, DOI: https://doi.org/10.1016/J.JLAMP.2021.100743 | en |
| dc.references | N. Kamide, An equivalence between sequent calculi for linear-time temporal logic, Bulletin of the Section of Logic, vol. 35(4) (2006), pp. 187–194. | en |
| dc.references | N. Kamide, Embedding Linear-Time Temporal Logic into Infinitary Logic: Application to Cut-Elimination for Multi-agent Infinitary Epistemic Linear-Time Temporal Logic, [in:] M. Fisher, F. Sadri, M. Thielscher (eds.), Computational Logic in Multi-Agent Systems, Springer Berlin Heidelberg, Berlin, Heidelberg (2009), pp. 57–76, DOI: https://doi.org/10.1007/978-3-642-02734-5_5 | en |
| dc.references | N. Kamide, Notes on an extension of Davies’ logic for binding-time analysis, Far East Journal of Applied Mathematics, vol. 44(1) (2010), pp. 37–57. | en |
| dc.references | N. Kamide, Bounded linear-time temporal logic: A proof-theoretic investigation, Annals of Pure and Applied Logic, vol. 163(4) (2012), pp. 439–466, DOI: https://doi.org/10.1016/J.APAL.2011.12.002 | en |
| dc.references | N. Kamide, Temporal Gödel-Gentzen and Girard translations, Mathematical Logic Quarterly, vol. 59(1–2) (2013), pp. 66–83, DOI: https://doi.org/10.1002/MALQ.201100083 | en |
| dc.references | N. Kamide, Embedding theorems for LTL and its variants, Mathematical Structures in Computer Science, vol. 25(1) (2015), pp. 83–134, DOI: https://doi.org/10.1017/S0960129514000048 | en |
| dc.references | N. Kamide, Interpolation theorems for some variants of LTL, Reports on Mathematical Logic, vol. 50 (2015), pp. 3–30, URL: https://rml.tcs.uj.edu.pl/rml-50/1-kamide.pdf | en |
| dc.references | N. Kamide, Relating first-order monadic omega-logic, propositional linear-time temporal logic, propositional generalized definitional reflection logic and propositional infinitary logic, Journal of Logic and Computation, vol. 27(7) (2017), pp. 2271–2301, DOI: https://doi.org/10.1093/LOGCOM/EXX006 | en |
| dc.references | N. Kamide, Natural deduction with explosion and excluded middle, [in:] Proceedings of the 53rd IEEE International Symposium on Multiple-valued Logic (ISMVL 2023) (2023), pp. 24–29, DOI: https://doi.org/10.1109/ISMVL57333.2023.00016 | en |
| dc.references | N. Kamide, Refutation-Aware Gentzen-Style Calculi for Propositional Until-Free Linear-Time Temporal Logic, Studia Logica, vol. 111(6) (2023), pp. 979–1014, DOI: https://doi.org/10.1007/S11225-023-10052-7 | en |
| dc.references | N. Kamide, S. Negri, A unified Gentzen-style framework for until-free LTL, vol. 415 of Electronic Proceedings in Theoretical Computer Science (2024), pp. 165–179, DOI: https://doi.org/10.4204/EPTCS.415.16 | en |
| dc.references | N. Kamide, S. Negri, Proof theory for extended Belnap–Dunn and intuitionistic logics, Studia Logica, (2025), DOI: https://doi.org/10.1007/s11225-025-10203-y online first. | en |
| dc.references | N. Kamide, S. Negri, Unified natural deduction for logics of strong negation, Notre Dame Journal of Formal Logic, vol. 66(4) (2025), pp. 543–580, DOI: https://doi.org/10.1215/00294527-2025-0016 | en |
| dc.references | N. Kamide, H. Wansing, Combining linear-time temporal logic with constructiveness and paraconsistency, Journal of Applied Logic, vol. 8(1) (2011), pp. 33–61, DOI: https://doi.org/10.1016/J.JAL.2009.06.001 | en |
| dc.references | N. Kamide, H. Wansing, A paraconsistent linear-time temporal logic, Fundamenta Informaticae, vol. 106(1) (2011), pp. 1–23, DOI: https://doi.org/10.3233/FI-2011-374 | en |
| dc.references | H. Kawai, Sequential calculus for a first order infinitary temporal logic, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 33 (1987), pp. 423–432, DOI: https://doi.org/10.1002/MALQ.19870330506 | en |
| dc.references | I. Kim, K. Yi, C. Calcagno, A polymorphic modal type system for lisp-like multi-staged languages, [in:] J. G. Morrisett, S. L. P. Jones (eds.), Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), ACM (2006), pp. 257–268, DOI: https://doi.org/10.1145/1111037.1111060 | en |
| dc.references | K. Kojima, A. Igarashi, On constructive linear-time temporal logic, [in:] Proceedings of Intuitionistic Modal Logics and Applications Workshop (IMLA’08) (2008), 12 pp. | en |
| dc.references | N. Kürbis, Y. Petrukhin, Normalisation for some quite interesting many-valued logics, Logic and Logical Philosophy, vol. 30(3) (2021), pp. 493–534. | en |
| dc.references | E. Moggi, W. Taha, Z.-E.-A. Benaissa, T. Sheard, An Idealized MetaML: Simpler, and More Expressive, [in:] S. D. Swierstra (ed.), Proceedings of the 8th European Symposium on Programming (ESOP’99), vol. 1576 of Lecture Notes in Computer Science, Springer (1999), pp. 193–207, DOI: https://doi.org/10.1007/3-540-49099-X_13 | en |
| dc.references | A. Nanevski, Meta-programming with names and necessity, [in:] M. Wand, S. L. P. Jones (eds.), Proceedings of the Seventh ACM SIGPLAN International Conference on Functional Programming (ICFP ’02), ACM (2002), pp. 206–217, DOI: https://doi.org/10.1145/581478.581498 | en |
| dc.references | S. Negri, Geometric rules in infinitary logic, [in:] O. Arieli, A. Zamansky (eds.), Arnon Avron on Semantics and Proof Theory of Non-Classical Logics, Outstanding Contributions to Logic, Springer (2021), pp. 265–293 | en |
| dc.references | S. Negri, J. von Plato, Sequent calculus in natural deduction style, Journal of Symbolic Logic 66 (4), (2001), pp. 1803–1816, DOI: https://doi.org/10.2307/2694976 | en |
| dc.references | S. Negri, J. von Plato, Structural Proof Theory (2001), DOI: https://doi.org/10.1017/CBO9780511527340 | en |
| dc.references | D. Nelson, Constructible falsity, Journal of Symbolic Logic, vol. 14 (1949), pp. 16–26, DOI: https://doi.org/10.2307/2268973 | en |
| dc.references | B. Paech, Gentzen-Systems for propositional temporal logics, [in:] E. Börger, H. K. Büning, M. M. Richter (eds.), CSL ’88, Springer Berlin Heidelberg, Berlin, Heidelberg (1989), pp. 240–253, DOI: https://doi.org/10.1007/BFb0026305 | en |
| dc.references | R. Pliuškevičius, Investigation of finitary calculus for a discrete linear time logic by means of infinitary calculus, [in:] J. Bārzdinš, D. Bjørner (eds.), Baltic Computer Science, Springer Berlin Heidelberg, Berlin, Heidelberg (1991), pp. 504–528, DOI: https://doi.org/10.1007/BFb0019366 | en |
| dc.references | A. Pnueli, The temporal logic of programs (1977), pp. 46–57, DOI: https://doi.org/10.1109/SFCS.1977.32 | en |
| dc.references | D. Prawitz, Natural deduction: a proof-theoretical study (1965), DOI: https://doi.org/10.2307/2271676 | en |
| dc.references | G. Priest, Natural Deduction Systems for Logics in the FDE Family, [in:] H. Omori, H. Wansing (eds.), New Essays on Belnap-Dunn Logic, Springer International Publishing, Cham (2019), pp. 279–292, DOI: https://doi.org/10.1007/978-3-030-31136-0_16 | en |
| dc.references | M. E. Szabo, Collected papers of Gerhard Gentzen, [in:] M. E. Szabo (ed.), Studies in Logic and the Foundations of Mathematics, North-Holland (1969), DOI: https://doi.org/10.2307/2272429 english translation. | en |
| dc.references | M. E. Szabo, A sequent calculus for Kröger logic, [in:] A. Salwicki (ed.), Logics of Programs and Their Applications, Springer Berlin Heidelberg, Berlin, Heidelberg (1983), pp. 295–303, DOI: https://doi.org/10.1007/3-540-11981-7_21 | en |
| dc.references | W. Taha, T. Sheard, Multi-Stage Programming with Explicit Annotations, [in:] J. P. Gallagher, C. Consel, A. M. Berman (eds.), Proceedings of the ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation (PEPM ’97), ACM (1997), pp. 203–217, DOI: https://doi.org/10.1145/258993.259019 | en |
| dc.references | L. Tranchini, Natural deduction for bi-intuitionistic logic, Journal of Applied Logic, vol. 25(Supplement) (2017), pp. S72–S96, DOI: https://doi.org/10.1016/J.JAL.2017.12.001 | en |
| dc.references | A. S. Troelstra, H. Schwichtenberg, Basic Proof Theory, vol. 45 of Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, (2000), DOI: https://doi.org/10.1017/CBO9781139168717 | en |
| dc.references | J. von Plato, Proof theory of full classical propositional logic (1999), manuscript, 16 pp. | en |
| dc.references | J. von Plato, Elements of Logical Reasoning (2014), DOI: https://doi.org/10.1017/CBO9781139567862 | en |
| dc.references | J. von Plato, Saved from the Cellar: Gerhard Gentzen’s Shorthand Notes on Logic & Foundations of Mathematics (2017), DOI: https://doi.org/10.1007/978-3-319-42120-9 | en |
| dc.references | Y. Yuse, A. Igarashi, A modal type system for multi-level generating extensions with persistent code, [in:] A. Bossi, M. J. Maher (eds.), Proceedings of the 8th International ACM SIGPLAN Conference on Principles and Practice of Declarative Programming, ACM (2006), pp. 201–212, DOI: https://doi.org/10.1145/1140335.1140360 | en |
| dc.contributor.authorEmail | Kamide, Norihiro - drnkamide08@kpd.biglobe.ne.jp | |
| dc.contributor.authorEmail | Negri, Sara - sara.negri@unige.it | |
| dc.identifier.doi | 10.18778/0138-0680.2025.09 | |
| dc.relation.volume | 54 | |