Show simple item record

dc.contributor.authorIchikura, Kaito
dc.date.accessioned2025-12-12T15:22:22Z
dc.date.available2025-12-12T15:22:22Z
dc.date.issued2025-07-07
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/56968
dc.description.abstractWe analyze the relationship between logics around intuitionistic logic and minimal logic. We characterize the intersection of minimal logic and co-minimal logic introduced by Vakarelov, and reformulate logics given in the previous studies by Vakarelov, Bezhanishvili, Colacito, de Jongh, Vargas, and Niki in a uniform language. We also compare the new logic with other known logics in terms of the cardinalities of logics between them. Specifically, we apply Wronski’s algebraic semantics, instead of neighborhood semantics used in the previous studies, to show the existence of continua of logics between known logics and the new logic. This result is an extension of the conventional results, and the proof is given in a simpler way.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;2en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectintuitionistic logicen
dc.subjectminimal logicen
dc.subjectsubminimal logicen
dc.subjectco-minimal logicen
dc.subjectYankov formulaen
dc.titleContinua of Logics Related to Intuitionistic and Minimal Logicsen
dc.typeArticle
dc.page.number283-323
dc.contributor.authorAffiliationTohoku University, Graduate School of Information Sciencesen
dc.identifier.eissn2449-836X
dc.referencesN. Bezhanishvili, A. Colacito, D. de Jongh, A study of subminimal logics of negation and their modal companions, [in:] Language, Logic, and Computation 12th International Tbilisi Symposium, TbiLLC 2017, Lagodekhi, Georgia, September 18-22, 2017, Revised Selected Papers 12, Springer (2019), pp. 21–41, DOI: https://doi.org/10.1007/978-3-662-59565-7_2en
dc.referencesA. Chagrov, M. Zakharyaschev, Modal logic, Oxford University Press (1997).en
dc.referencesA. Colacito, Minimal and Subminimal Logic of Negation, Master’s thesis, University of Amsterdam (2016), URL: https://eprints.illc.uva.nl/id/eprint/986en
dc.referencesA. Colacito, D. de Jongh, A. L. Vargas, Subminimal negation, Soft Computing, vol. 21 (2017), pp. 165–174, DOI: https://doi.org/10.1007/s00500-016-2391-8en
dc.referencesT. Hosoi, H. Ono, Intermediate propositional logics (a survey), Journal of Tsuda College, vol. 5 (1973), pp. 67–82.en
dc.referencesI. Johansson, Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus, Compositio Mathematica, vol. 4 (1937), pp. 119–136, URL: http://eudml.org/doc/88648en
dc.referencesS. Niki, Decidable variables for constructive logics, Mathematical Logic Quarterly, vol. 66(4) (2020), pp. 484–493, DOI: https://doi.org/10.1002/malq.202000022en
dc.referencesS. Niki, Subminimal logics in light of Vakarelov’s logic, Studia Logica, vol. 108(5) (2020), pp. 967–987, DOI: https://doi.org/10.1007/s11225-019-09884-zen
dc.referencesH. Ono, On some intuitionistic modal logics, Publications of the Research Institute for Mathematical Sciences, vol. 13(3) (1977), pp. 687–722.en
dc.referencesN. Suzuki, The existence of 2ω logics lacking the weakening rule below the intuitionistic logic, Reports on Mathematical Logic, vol. 21 (1987), pp. 85–95.en
dc.referencesM. Takano, A Syntactical Study of the Subminimal Logic with Nelson Negation, Nihonkai Mathematical Journal, vol. 18(1–2) (2007), pp. 17–31, URL: https://projecteuclid.org/journals/nihonkai-mathematical-journal/volume-18/issue-1-2/A-Syntactical-Study-of-the-Subminimal-Logic-with-Nelson-Negation/nihmj/1273587757.fullen
dc.referencesD. Vakarelov, Consistency, Completeness and Negation, [in:] G. Priest, R. Routley, J. Norman (eds.), Paraconsistent Logic: Essays on the inconsistent, Philosophia Verlag (1989), pp. 328–363.en
dc.referencesD. Vakarelov, Nelson’s negation on the base of weaker versions of intuitionistic negation, Studia Logica, vol. 80 (2005), pp. 393–430, DOI: https://doi.org/10.1007/s11225-005-8476-5en
dc.referencesP. W. Woodruff, A note on JP, Theoria, vol. 36 (2008), pp. 183–184, URL: https://api.semanticscholar.org/CorpusID:145545536en
dc.referencesA. Wroński, The degree of completeness of some fragments of the intuitionistic propositional logic, Reports on Mathematical Logic, vol. 2 (1974).en
dc.referencesV. Yankov, On the relation between deducibility in intuitionistic propositional calculus and finite implicative structures, Doklady Akademii Nauk SSSR, vol. 151(6) (1963), pp. 1293–1294.en
dc.referencesV. Yankov, The construction of a sequence of strongly independent superintuitionistic propositional calculi, Doklady Akademii Nauk SSSR, vol. 181 (1968), pp. 33–34.en
dc.contributor.authorEmailichikura.kaito.t7@dc.tohoku.ac.jp
dc.identifier.doi10.18778/0138-0680.2025.06
dc.relation.volume54


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0