| dc.contributor.author | Álvarez Lisboa, Miguel | |
| dc.date.accessioned | 2025-12-12T15:23:25Z | |
| dc.date.available | 2025-12-12T15:23:25Z | |
| dc.date.issued | 2025-11-28 | |
| dc.identifier.issn | 0138-0680 | |
| dc.identifier.uri | http://hdl.handle.net/11089/56970 | |
| dc.description.abstract | Ecumenical logics are systems where two logics can coexist, sharing vocabulary and avoiding collapses between them. The literature has focused mainly on ecumenism between classical and intuitionistic logic, and several calculi of Natural Deduction and Sequents have been proposed. In this paper I contribute to this project with a dialogical ecumenical system. This Game utilizes an extension of the intuitionistic structural rules that permits to handle classical disjunctions and conditionals. I show that this is indeed an ecumenical dialogical system, where classical formulas and intuitionistic formulas can be validated without collapses between them, and provide a philosophical defense of its design. | en |
| dc.language.iso | en | |
| dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
| dc.relation.ispartofseries | Bulletin of the Section of Logic;3 | en |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
| dc.subject | dialogics | en |
| dc.subject | logical ecumenism | en |
| dc.subject | game-theoretic semantics | en |
| dc.subject | intuitionistic logic | en |
| dc.title | Dialogical Ecumenism | en |
| dc.type | Article | |
| dc.page.number | 343-382 | |
| dc.contributor.authorAffiliation | SADAF-CONICET, Institute of Philosophical Investigations | en |
| dc.identifier.eissn | 2449-836X | |
| dc.references | J. Alama, A. Knoks, S. L. Uckelman, Dialogue games in classical logic, [in:] M. Giese, R. Kuznets (eds.), TABLEAUX 2011: Workshops, Tutorials, and Short Papers, Technical Report IAM-11-002, Universität Bern (2011), pp. 82–86, URL: https://aleksknoks.com/wp-content/uploads/2020/09/TABLEAUX2011-OurPaper.pdf | en |
| dc.references | A. Blass, A game semantics for linear logic, Annals of Pure and Applied Logic, vol. 56(1) (1992), pp. 183–220, DOI: https://doi.org/10.1016/0168-0072(92)90073-9 | en |
| dc.references | N. Clerbout, Étude sur quelques sémantiques dialogiques. Concepts fondamentaux et éléments de metathéorie, Ph.D. thesis, Leiden and Lille Universities (2014). | en |
| dc.references | N. Clerbout, Finiteness of plays and the dialogical problem of decidability, IfCoLog Journal of Logics and their Applications, vol. 1(1) (2014), pp. 115–130. | en |
| dc.references | N. Clerbout, Z. McConaughey, Dialogical Logic, [in:] E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, fall 2022 ed., Metaphysics Research Lab, Stanford University (2022), URL: https://plato.stanford.edu/entries/logic-dialogical/ | en |
| dc.references | G. Dowek, On the definition of the classical connectives and quantifiers(2016), arXiv:1601.01782. | en |
| dc.references | M. Dummett, Elements of Intuitionism, vol. 37 of Oxford Logic Guides, Clarendon Press (2000). | en |
| dc.references | W. Felscher, Dialogues, strategies, and intuitionistic provability, Annals of Pure and Applied Logic, vol. 28(3) (1985), pp. 217–254, DOI: https://doi.org/10.1016/0168-0072(85)90016-8 | en |
| dc.references | J.-Y. Girard, On the unity of logic, Annals of Pure and Applied Logic, vol. 59(3) (1993), pp. 201–217, DOI: https://doi.org/10.1016/0168-0072(93)90093-S | en |
| dc.references | K. Gödel, Zur intuitionistischen Arithmetik und Zahlentheorie, Ergebnisse eines mathematischen Kolloquiums, vol. 4 (1933), pp. 34–38. | en |
| dc.references | S. Kleene, Introduction to Metamathematics, first printing ed., Bibliotheca Mathematica, North-Holland Publishing Co. (1952). | en |
| dc.references | P. Krauss, A Constructive Interpretation of Classical Mathematics, Mathematische Schriften Kassel, GhK, Gesamthochsch. Kassel (1992). | en |
| dc.references | P. Lorenzen, K. Lorenz, Dialogische Logik, Kurztitelaufnahme der Deutschen Bibliothek, Wissenschaftliche Buchgesellschaft, [Abt. Verlag] (1978). | en |
| dc.references | V. L. B. Nascimento, Ecumenismo lógico, Master’s thesis, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil (2018), DOI: https://doi.org/10.17771/PUCRio.acad.34598 | en |
| dc.references | L. C. Pereira, E. Pimentel, On an ecumenical natural deduction with stoup – Part I: The propositional case (2022), arXiv:2204.02199. | en |
| dc.references | L. C. Pereira, R. O. Rodriguez, Normalization, Soundness and Completeness for the Propositional Fragment of Prawitz Ecumenical System, Revista Portuguesa de Filosofia, vol. 73(3–4) (2017), pp. 1153–1168, DOI: https://doi.org/10.17990/rpf/2017733_1153 | en |
| dc.references | E. Pimentel, L. C. Pereira, V. De Paiva, An ecumenical notion of entailment, Synthese, vol. 198 (2021), pp. 5391–5413, DOI: https://doi.org/10.1007/s11229-019-02226-5 | en |
| dc.references | D. Prawitz, Intuitionistic Logic: A Philosophical Challenge, [in:] G. H. Von Wright (ed.), Logic and Philosophy / Logique et Philosophie, Springer Netherlands, Dordrecht (1980), pp. 1–10, DOI: https://doi.org/10.1007/978-94-009-8820-0_1 | en |
| dc.references | D. Prawitz, Classical versus intuitionistic logic, [in:] Why is this a Proof? Festschrift for Luiz Carlos Pereira, vol. 27 of Tributes, Stockholm University, Department of Philosophy (2015), pp. 15–32. | en |
| dc.references | S. Rahman, N. Clerbout, L. Keiff, On Dialogues and Natural Deduction, [in:] G. P. et alii (ed.), Acts of Knowledge: History and Philosophy of Logic, College Publictions. Tributes, College Publications (2009), pp. 301–336, URL: https://shs.hal.science/halshs-00713187 | en |
| dc.references | S. Rahman, Z. McConaughey, A. Klev, N. Clerbout, Immanent Reasoning or Equality in Action: A Plaidoyer for the Player Level, Springer (2018), DOI: https://doi.org/10.1007/978-3-319-91149-6 | en |
| dc.contributor.authorEmail | miguel.alvarez@um.uchile.cl | |
| dc.identifier.doi | 10.18778/0138-0680.2025.12 | |
| dc.relation.volume | 54 | |