Show simple item record

dc.contributor.authorWalendziak, Andrzej
dc.date.accessioned2025-12-12T15:23:25Z
dc.date.available2025-12-12T15:23:25Z
dc.date.issued2025-11-28
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/56971
dc.description.abstractIn this paper, involutive weak exchange algebras (for short, involutive WE algebras) are introduced and studied. Their properties and characterizations are investigated. Some important results and examples are given. In particular, it is proven that in involutive WE algebras, the properties (BB), (B), (*), (**) and (Tr) are equivalent. Moreover, involutive BE, involutive GE, involutive pre-BCK and involutive pre-Hilbert algebras are considered, their connections are established. It is shown that involutive WE algebras (respectively, involutive GE algebras) satisfying the commutative property are Wajsberg algebras (respectively, Boolean algebras). Finally, the interrelationships between the classes of involutive algebras considered here are presented.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;3en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subject(involutive) Hilbert algebraen
dc.subjectpre-Hilbert algebraen
dc.subjectBCKen
dc.subjectBEen
dc.subjectGE algebraen
dc.subject(positive) implicativityen
dc.subjectcommutativityen
dc.titleOn Involutive Weak Exchange Algebrasen
dc.typeArticle
dc.page.number383-406
dc.contributor.authorAffiliationUniversity of Siedlce, Faculty of Exact and Natural Sciences, Institute of Mathematicsen
dc.identifier.eissn2449-836X
dc.referencesR. K. Bandaru, A. Borumand Saeid, Y. B. Jun, On GE-algebras, Bulletin of the Section of Logic, vol. 50(1) (2021), pp. 81–96, DOI: https://doi.org/10.18778/0138-0680.2020.20en
dc.referencesR. Borzooei, A. Borumand Saeid, R. Ameri, A. Rezaei, Involutory BE-algebras, Journal of Mathematics and Applications, vol. 37 (2014), pp. 13–26.en
dc.referencesD. Buşneag, S. Rudeanu, A glimpse of deductive systems in algebra, Central European Journal of Mathematics, vol. 8 (2010), pp. 688–705, DOI: https://doi.org/10.2478/s11533-010-0041-4en
dc.referencesA. Diego, Sur les algèbras de Hilbert, [in:] Collection de Logique Mathématique, Serie A, vol. 21, Gauthier-Villars, Paris (1966).en
dc.referencesJ. M. Font, A. J. Rodrígues, A. Torrens, Wajsberg algebras, Stochastica, vol. 8(1) (1984), pp. 5–31, URL: http://eudml.org/doc/38902en
dc.referencesL. Henkin, An algebraic characterization of quantifilers, Fundamenta Mathematicae, vol. 37(1) (1950), pp. 63–74, URL: https://eudml.org/doc/213228en
dc.referencesY. Huang, Some examples of involutory BCK-algebras, Demonstratio Mathematica, vol. 38(4) (2005), pp. 793–798, DOI: https://doi.org/10.1515/dema-2005-0403en
dc.referencesA. Iorgulescu, New generalizations of BCI, BCK and Hilbert algebras – Part I, Journal of Multiple-Valued Logic and Soft Computing, vol. 27(4) (2005), pp. 353–406.en
dc.referencesA. Iorgulescu, Asupra algebrelor Booleene (in Romanian) (2009), revista de Logică, URL: http://egovbus.net/rdlen
dc.referencesA. Iorgulescu, Algebras of logic vs. algebras, [in:] A. Rezuş (ed.), Contemporary logic and computing, vol. 1 of Landscapes in Logic, College Publications, London (2020), pp. 157–258.en
dc.referencesK. Iséki, An algebra related with a propositional culculus, Proceedings of the Japan Academy, vol. 42(1) (1966), pp. 26–29, DOI: https://doi.org/10.3792/pja/1195522171en
dc.referencesK. Iséki, S. Tanaka, An introduction to the theory of BCK-algebras, Mathematica Japonica, vol. 23(1) (1978), pp. 1–26.en
dc.referencesH. S. Kim, Y. H. Kim, On BE-algebras, Scientiae Mathematicae Japonicae, vol. 66(1) (2007), pp. 113–128, DOI: https://doi.org/10.32219/isms.66.1_113en
dc.referencesY. Komori, The separation theorem of the ℵ0-valued Łukasiewicz propositional logic, [in:] Reports of the Faculty of Science, vol. 12, Shizuoka University (1978), pp. 1–5, DOI: https://doi.org/10.32219/isms.66.1_113en
dc.referencesY. Komori, Super-Łukasiewicz propositional logic, Nagoya Mathematical Journal, vol. 84 (1981), pp. 119–133.en
dc.referencesA. Monteiro, Cours sur les algebres de Hilbert et de Tarski, Instituto de Matemática, Universuidad Nacional del Sur, Baía Blanca (1960).en
dc.referencesA. N. Prior, Formal Logics, 2nd ed., Oxford University Press, Oxford (1962).en
dc.referencesM. Wajsberg, Beiträge zum Mataaussagenkalkül, I, Manatshefte für Mathematik und Physik, vol. 42 (1935), pp. 221–242.en
dc.referencesA. Walendziak, On commutative BE algebras, Scientiae Mathematicae Japonicae, vol. 69(2) (2008), pp. 585–588, DOI: https://doi.org/10.32219/ISMS.69.2_281en
dc.referencesA. Walendziak, The property of commutativity for some generalizations of BCK algebras, Soft Computing, vol. 23(17) (2019), pp. 7505–7511, DOI: https://doi.org/10.1007/s00500-018-03691-9en
dc.referencesA. Walendziak, On implicative and positive implicative of GE algebras, Bulletin of the Section of Logic, vol. 52(4) (2023), pp. 497–515, DOI: https://doi.org/10.18778/0138-0680.2023.21en
dc.referencesA. Walendziak, On pre-Hilbert algebras and positive implicative pre-Hilbert algebras, Bulletin of the Section of Logic, vol. 53(3) (2024), pp. 345–364, DOI: https://doi.org/10.18778/0138-0680.2024.07en
dc.referencesA. Walendziak, Exchange pre-Hilbert algebras and their connections with other algebras of logic, Italian Journal of Pure and Applied Mathematics, vol. 53 (2025), pp. 200–214, DOI: https://doi.org/10.18778/0138-0680.2024.07en
dc.contributor.authorEmailwalent@interia.pl
dc.identifier.doi10.18778/0138-0680.2025.13
dc.relation.volume54


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0