| dc.contributor.author | Walendziak, Andrzej | |
| dc.date.accessioned | 2025-12-12T15:23:25Z | |
| dc.date.available | 2025-12-12T15:23:25Z | |
| dc.date.issued | 2025-11-28 | |
| dc.identifier.issn | 0138-0680 | |
| dc.identifier.uri | http://hdl.handle.net/11089/56971 | |
| dc.description.abstract | In this paper, involutive weak exchange algebras (for short, involutive WE algebras) are introduced and studied. Their properties and characterizations are investigated. Some important results and examples are given. In particular, it is proven that in involutive WE algebras, the properties (BB), (B), (*), (**) and (Tr) are equivalent. Moreover, involutive BE, involutive GE, involutive pre-BCK and involutive pre-Hilbert algebras are considered, their connections are established. It is shown that involutive WE algebras (respectively, involutive GE algebras) satisfying the commutative property are Wajsberg algebras (respectively, Boolean algebras). Finally, the interrelationships between the classes of involutive algebras considered here are presented. | en |
| dc.language.iso | en | |
| dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
| dc.relation.ispartofseries | Bulletin of the Section of Logic;3 | en |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
| dc.subject | (involutive) Hilbert algebra | en |
| dc.subject | pre-Hilbert algebra | en |
| dc.subject | BCK | en |
| dc.subject | BE | en |
| dc.subject | GE algebra | en |
| dc.subject | (positive) implicativity | en |
| dc.subject | commutativity | en |
| dc.title | On Involutive Weak Exchange Algebras | en |
| dc.type | Article | |
| dc.page.number | 383-406 | |
| dc.contributor.authorAffiliation | University of Siedlce, Faculty of Exact and Natural Sciences, Institute of Mathematics | en |
| dc.identifier.eissn | 2449-836X | |
| dc.references | R. K. Bandaru, A. Borumand Saeid, Y. B. Jun, On GE-algebras, Bulletin of the Section of Logic, vol. 50(1) (2021), pp. 81–96, DOI: https://doi.org/10.18778/0138-0680.2020.20 | en |
| dc.references | R. Borzooei, A. Borumand Saeid, R. Ameri, A. Rezaei, Involutory BE-algebras, Journal of Mathematics and Applications, vol. 37 (2014), pp. 13–26. | en |
| dc.references | D. Buşneag, S. Rudeanu, A glimpse of deductive systems in algebra, Central European Journal of Mathematics, vol. 8 (2010), pp. 688–705, DOI: https://doi.org/10.2478/s11533-010-0041-4 | en |
| dc.references | A. Diego, Sur les algèbras de Hilbert, [in:] Collection de Logique Mathématique, Serie A, vol. 21, Gauthier-Villars, Paris (1966). | en |
| dc.references | J. M. Font, A. J. Rodrígues, A. Torrens, Wajsberg algebras, Stochastica, vol. 8(1) (1984), pp. 5–31, URL: http://eudml.org/doc/38902 | en |
| dc.references | L. Henkin, An algebraic characterization of quantifilers, Fundamenta Mathematicae, vol. 37(1) (1950), pp. 63–74, URL: https://eudml.org/doc/213228 | en |
| dc.references | Y. Huang, Some examples of involutory BCK-algebras, Demonstratio Mathematica, vol. 38(4) (2005), pp. 793–798, DOI: https://doi.org/10.1515/dema-2005-0403 | en |
| dc.references | A. Iorgulescu, New generalizations of BCI, BCK and Hilbert algebras – Part I, Journal of Multiple-Valued Logic and Soft Computing, vol. 27(4) (2005), pp. 353–406. | en |
| dc.references | A. Iorgulescu, Asupra algebrelor Booleene (in Romanian) (2009), revista de Logică, URL: http://egovbus.net/rdl | en |
| dc.references | A. Iorgulescu, Algebras of logic vs. algebras, [in:] A. Rezuş (ed.), Contemporary logic and computing, vol. 1 of Landscapes in Logic, College Publications, London (2020), pp. 157–258. | en |
| dc.references | K. Iséki, An algebra related with a propositional culculus, Proceedings of the Japan Academy, vol. 42(1) (1966), pp. 26–29, DOI: https://doi.org/10.3792/pja/1195522171 | en |
| dc.references | K. Iséki, S. Tanaka, An introduction to the theory of BCK-algebras, Mathematica Japonica, vol. 23(1) (1978), pp. 1–26. | en |
| dc.references | H. S. Kim, Y. H. Kim, On BE-algebras, Scientiae Mathematicae Japonicae, vol. 66(1) (2007), pp. 113–128, DOI: https://doi.org/10.32219/isms.66.1_113 | en |
| dc.references | Y. Komori, The separation theorem of the ℵ0-valued Łukasiewicz propositional logic, [in:] Reports of the Faculty of Science, vol. 12, Shizuoka University (1978), pp. 1–5, DOI: https://doi.org/10.32219/isms.66.1_113 | en |
| dc.references | Y. Komori, Super-Łukasiewicz propositional logic, Nagoya Mathematical Journal, vol. 84 (1981), pp. 119–133. | en |
| dc.references | A. Monteiro, Cours sur les algebres de Hilbert et de Tarski, Instituto de Matemática, Universuidad Nacional del Sur, Baía Blanca (1960). | en |
| dc.references | A. N. Prior, Formal Logics, 2nd ed., Oxford University Press, Oxford (1962). | en |
| dc.references | M. Wajsberg, Beiträge zum Mataaussagenkalkül, I, Manatshefte für Mathematik und Physik, vol. 42 (1935), pp. 221–242. | en |
| dc.references | A. Walendziak, On commutative BE algebras, Scientiae Mathematicae Japonicae, vol. 69(2) (2008), pp. 585–588, DOI: https://doi.org/10.32219/ISMS.69.2_281 | en |
| dc.references | A. Walendziak, The property of commutativity for some generalizations of BCK algebras, Soft Computing, vol. 23(17) (2019), pp. 7505–7511, DOI: https://doi.org/10.1007/s00500-018-03691-9 | en |
| dc.references | A. Walendziak, On implicative and positive implicative of GE algebras, Bulletin of the Section of Logic, vol. 52(4) (2023), pp. 497–515, DOI: https://doi.org/10.18778/0138-0680.2023.21 | en |
| dc.references | A. Walendziak, On pre-Hilbert algebras and positive implicative pre-Hilbert algebras, Bulletin of the Section of Logic, vol. 53(3) (2024), pp. 345–364, DOI: https://doi.org/10.18778/0138-0680.2024.07 | en |
| dc.references | A. Walendziak, Exchange pre-Hilbert algebras and their connections with other algebras of logic, Italian Journal of Pure and Applied Mathematics, vol. 53 (2025), pp. 200–214, DOI: https://doi.org/10.18778/0138-0680.2024.07 | en |
| dc.contributor.authorEmail | walent@interia.pl | |
| dc.identifier.doi | 10.18778/0138-0680.2025.13 | |
| dc.relation.volume | 54 | |