Show simple item record

dc.contributor.authorRasga, João
dc.contributor.authorSernadas, Cristina
dc.date.accessioned2025-12-12T15:23:26Z
dc.date.available2025-12-12T15:23:26Z
dc.date.issued2025-11-28
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/56972
dc.description.abstractPrawitz suggested expanding a natural deduction system for intuitionistic logic to include rules for classical logic constructors, allowing both intuitionistic and classical elements to coexist without losing their inherent characteristics. Looking at the added rules from the point of view of the Gödel-Gentzen translation, led us to propose a general method for the coexistent combination of two logics when a conservative translation exists from one logic (the source) to another (the host). Then we prove that the combined logic is a conservative extension of the original logics, thereby preserving the unique characteristics of each component logic. In this way there is no collapse of one logic into the other in the combination. We also demonstrate that a Gentzen calculus for the combined logic can be induced from a Gentzen calculus for the host logic by considering the translation. This approach applies to semantics as well. We then establish a general sufficient condition for ensuring that the combined logic is both sound and complete. We apply these principles by combining classical and intuitionistic logics capitalizing on the Gödel-Gentzen conservative translation, intuitionistic and S4 modal logics relying on the Gödel-McKinsey-Tarski conservative translation, and classical and Jaśkowski’s paraconsistent logics taking into account the existence of a conservative translation.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;3en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectnon-collapsing combination of logicsen
dc.subjectconservative translationen
dc.subjectconservativeness of the combinationen
dc.subjectGentzen calculusen
dc.titleFrom Translations to Non-Collapsing Logic Combinationsen
dc.typeArticle
dc.page.number407-446
dc.contributor.authorAffiliationRasga, João - Universidade de Lisboa, Instituto Superior Técnico, Dep. Matemáticaen
dc.contributor.authorAffiliationSernadas, Cristina - Universidade de Lisboa, Instituto Superior Técnico, Dep. Matemáticaen
dc.identifier.eissn2449-836X
dc.referencesA. Avron, Classical Gentzen-type methods in propositional many-valued logics, [in:] Beyond Two: Theory and Applications of Multiple-valued Logic, Physica (2003), pp. 117–155, DOI: https://doi.org/10.1109/ISMVL.2001.924586en
dc.referencesP. Blackburn, J. F. A. K. v. Benthem, Modal logic: A semantic perspective, [in:] P. Blackburn, J. F. A. K. v. Benthem, F. Wolter (eds.), Handbook of Modal Logic, Elsevier (2006), pp. 173–204.en
dc.referencesW. J. Blok, D. Pigozzi, Abstract Algebraic Logic and the Deduction Theorem, Tech. rep., Iowa State University (2001), available at https://faculty.sites.iastate.edu/dpigozzi/files/inline-files/aaldedth.pdfen
dc.referencesC. Caleiro, J. Ramos, From fibring to cryptofibring. A solution to the collapsing problem, Logica Universalis, vol. 1(1) (2007), pp. 71–92, DOI: https://doi.org/10.1007/s11787-006-0004-5en
dc.referencesL. F. del Cerro, A. Herzig, Combining classical and intuitionistic logic, [in:] F. Baader, K. U. Schulz (eds.), Frontiers of Combining Systems, Springer (1996), pp. 93–102, DOI: https://doi.org/10.1007/978-94-009-0349-4_4en
dc.referencesS. Demri, R. Goré, An O((n·logn)3)-time transformation from Grz into decidable fragments of classical first-order logic, [in:] Automated Deduction in Classical and Non-classical Logics, vol. 1761 of Lecture Notes in Computer Science, Springer (2000), pp. 152–166, DOI: https://doi.org/10.1007/3-540-46508-1_10en
dc.referencesR. Diaconescu, Institution-independent Model Theory, Studies in Universal Logic, Birkhäuser (2008), DOI: https://doi.org/10.1007/978-3-7643-8708-2en
dc.referencesI. M. L. D’Ottaviano, The completeness and compactness of a three-valued first-order logic, Revista Colombiana de Matemáticas, vol. 19(1-2) (1985), pp. 77–94.en
dc.referencesI. M. L. D’Ottaviano, N. C. A. da Costa, Sur un problème de Jaśkowski,Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences. Séries A et B, vol. 270 (1970), pp. A1349–A1353.en
dc.referencesI. M. L. D’Ottaviano, H. A. Feitosa, Paraconsistent logics and translations, Synthese, vol. 125(1-2) (2000), pp. 77–95, DOI: https://doi.org/10.1023/A:1005298624839en
dc.referencesM. Dummett, The Logical Basis of Metaphysics, Harvard University Press (1991).en
dc.referencesJ. L. Fiadeiro, A. Sernadas, Structuring theories on consequence, [in:] ADT 1987: Recent Trends in Data Type Specification, vol. 332 of Lecture Notes in Computer Science, Springer (1987), pp. 44–72, DOI: https://doi.org/10.1007/3-540-50325-0_3en
dc.referencesD. M. Gabbay, An overview of fibred semantics and the combination of logics, [in:] Frontiers of Combining Systems, vol. 3, Kluwer (1996), pp. 1–55, DOI: https://doi.org/10.1007/978-94-009-0349-4_1en
dc.referencesG. Gentzen, The Collected Papers of Gerhard Gentzen, North-Holland (1969).en
dc.referencesK. Gödel, Collected Works. Vol. I, Oxford University Press (1986).en
dc.referencesJ. A. Goguen, R. M. Burstall, Introducing institutions, [in:] Logics of Programs, vol. 164 of Lecture Notes in Computer Science, Springer (1984), pp. 221–256, DOI: https://doi.org/10.1007/3-540-12896-4_366en
dc.referencesJ. A. Goguen, R. M. Burstall, Institutions: Abstract model theory for specification and programming, Journal of the Association for Computing Machinery, vol. 39(1) (1992), pp. 95–146, DOI: https://doi.org/10.1145/147508.147524en
dc.referencesP. T. Johnstone, Stone Spaces, vol. 3 of Cambridge Studies in Advanced Mathematics, Cambridge University Press (1986), reprint of the 1982 edition.en
dc.referencesM. Kracht, F. Wolter, Properties of independently axiomatizable bimodal logics, The Journal of Symbolic Logic, vol. 56(4) (1991), pp. 1469–1485, DOI: https://doi.org/10.2307/2275487en
dc.referencesP. H. Krauss, A constructive refinement of classical logic, [in:] Mathematische Schriften Kassel (1992), preprint 5.en
dc.referencesJ. C. C. McKinsey, A. Tarski, Some theorems about the sentential calculi of Lewis and Heyting, The Journal of Symbolic Logic, vol. 13 (1948), pp. 1–15, DOI: https://doi.org/10.2307/2268135.en
dc.referencesJ. Meseguer, General logics, [in:] Logic Colloquium, vol. 129, North-Holland (1989), pp. 275–329, DOI: https://doi.org/10.1016/S0049-237X(08)70132-0en
dc.referencesL. C. Pereira, R. O. Rodriguez, Normalization, Soundness and Completeness for the Propositional Fragment of Prawitz’ Ecumenical System, Revista Portuguesa de Filosofia, vol. 73(3/4) (2017), pp. 1153–1168, DOI: https://doi.org/10.17990/RPF/2017_73_3_1153en
dc.referencesE. Pimentel, L. C. Pereira, V. de Paiva, An ecumenical notion of entailment, Synthese, vol. 198(suppl. 22) (2021), pp. S5391–S5413, DOI: https://doi.org/10.1007/s11229-019-02226-5en
dc.referencesK. R. Popper, On the theory of deduction II, Indagationes Math., vol. 10 (1948), pp. 111–120, DOI: https://doi.org/10.1007/978-3-030-94926-6_6en
dc.referencesD. Prawitz, Classical versus intuitionistic logic, [in:] Why is this a Proof? Festschrift for Luiz Carlos Pereira, College Publications (2015), pp. 15–32.en
dc.referencesW. V. Quine, Philosophy of Logic, Foundations of Philosophy Series, Prentice-Hall (1970), sixth printing.en
dc.referencesJ. Ramos, J. Rasga, C. Sernadas, Conservative translations revisited, Journal of Philosophical Logic, vol. 52(3) (2023), pp. 889–913, DOI: https://doi.org/10.1007/s10992-022-09691-3en
dc.referencesJ. Rasga, C. Sernadas, On combining intuitionistic and S4 modal logic, Bulletin of the Section of Logic, vol. 53(3) (2024), pp. 321–344, DOI: https://doi.org/10.18778/0138-0680.2024.11en
dc.referencesJ. Rasga, C. Sernadas, W. A. Carnielli, Reduction techniques for proving decidability in logics and their meet-combination, The Bulletin of Symbolic Logic, vol. 27(1) (2021), pp. 39–66, DOI: https://doi.org/10.1017/bsl.2021.17en
dc.referencesV. Rybakov, Admissibility of Logical Inference Rules, North-Holland (1997).en
dc.referencesC. Sernadas, J. Rasga, W. A. Carnielli, Modulated fibring and the collapsing problem, The Journal of Symbolic Logic, vol. 67(4) (2002), pp. 1541–1569, DOI: https://doi.org/10.2178/jsl/1190150298en
dc.referencesS. K. Thomason, Independent propositional modal logics, Studia Logica, vol. 39(2-3) (1980), pp. 143–144, DOI: https://doi.org/10.1007/BF00370317en
dc.referencesA. S. Troelstra, H. Schwichtenberg, Basic Proof Theory, Cambridge University Press (2000), DOI: https://doi.org/10.1023/A:1008226228293en
dc.referencesG. Voutsadakis, Categorical abstract algebraic logic: models of π-institutions, Notre Dame Journal of Formal Logic, vol. 46(4) (2005), pp. 439–460, DOI: https://doi.org/10.1305/ndjfl/1134397662en
dc.contributor.authorEmailRasga, João - joao.rasga@tecnico.ulisboa.pt
dc.contributor.authorEmailSernadas, Cristina - cristina.sernadas@tecnico.ulisboa.pt
dc.identifier.doi10.18778/0138-0680.2025.14
dc.relation.volume54


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0