Pokaż uproszczony rekord

dc.contributor.authorStocka, Agnieszka
dc.date.accessioned2025-12-12T15:23:26Z
dc.date.available2025-12-12T15:23:26Z
dc.date.issued2025-11-28
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/56973
dc.description.abstractWe introduce the concepts of dually balanced lattices and \(M\)-lattices and provide some basic properties of these classes of lattices. Both classes can be viewed as generalizations of the well-known class of modular lattices. In particular, we obtain analogues of the Kurosh-Ore theorem for dually balanced lattices and the Jordan-Hölder theorem for \(M\)-lattices. Furthermore, we investigate the behaviour of several invariants, including the hollow dimension and the Kurosh-Ore dimension in dually balanced lattices, as well as the maximal dimension in \(M\)-lattices.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;3en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectmodular latticeen
dc.subjecthollow dimensionen
dc.subjectKurosh-Ore dimensionen
dc.titleOn Generalization of Modular Latticesen
dc.typeArticle
dc.page.number447-469
dc.contributor.authorAffiliationUniversity of Białystok, Faculty of Mathematicsen
dc.identifier.eissn2449-836X
dc.referencesC. Bagiński, A. Stocka, Finite groups with L-free lattices of subgroups,Illinois Journal of Mathematics, vol. 52 (2008), pp. 887–900, DOI: https://doi.org/10.1215/ijm/1254403720en
dc.referencesG. Birkhoff, Lattice theory, American Mathematical Society (AMS), RI, Providence (1967).en
dc.referencesE. Detomi, A. Lucchini, Maximal subgroups of finite soluble groups in general position, Annali di Matematica Pura ed Applicata, vol. 195 (2016), pp. 1177–1183, DOI: https://doi.org/10.1007/s10231-015-0510-2en
dc.referencesR. Fernando, On an inequality of dimension-like invariants for finite groups (2015), arXiv:1502.00360.en
dc.referencesA. Goldie, The structure of prime rings under ascending chain conditions, Proceedings of the London Mathematical Society, vol. 8 (1958), pp. 589–608, DOI: https://doi.org/10.1112/plms/s3-8.4.589en
dc.referencesG. Grätzer, General lattice theory, Birkhäuser, Basel (2003).en
dc.referencesP. Grzeszczuk, E. R. Puczyłowski, On Goldie and dual Goldie dimensions, Journal of Pure and Applied Algebra, vol. 31 (1984), pp. 47–54, DOI: https://doi.org/10.1016/0022-4049(84)90075-6en
dc.referencesP. Grzeszczuk, E. R. Puczyłowski, On infinite Goldie dimension of modular lattices and modules, Journal of Pure and Applied Algebra, vol. 35 (1985), pp. 151–155, DOI: https://doi.org/10.1016/0022-4049(85)90037-4en
dc.referencesJ. Krempa, B. Terlikowska-Osłowska, On uniform dimension of lattices, [in:] Contributions to general algebra 9. Proceedings of the conference, Linz, Austria, June 1994, Hölder-Pichler-Tempsky, Wien (1994), pp. 219–230.en
dc.referencesA. Lucchini, Maximal Intersections in Finite Groups, Mediterranean Journal of Mathematics, vol. 19 (2022), p. 34, DOI: https://doi.org/10.1007/s00009-021-01961-9en
dc.referencesE. R. Puczyłowski, On some dimensions of modular lattices and matroids, [in:] International symposium on ring theory. Proceedings of the 3rd Korea-China-Japan international symposium, held jointly with the 2nd Korea-Japan joint ring theory seminar, Kyongju, Korea, June 28–July 3, 1999, Boston, MA: Birkhäuser (2001), pp. 303–312.en
dc.referencesK. Reuter, The Kurosh-Ore exchange property, Acta Mathematica Hungarica, vol. 53 (1989), pp. 119–127, DOI: https://doi.org/10.1007/BF02170062en
dc.referencesB. Stenstrom, Radicals and socles of lattices, Archiv der Mathematik, vol. 20 (1969), pp. 258–261, DOI: https://doi.org/10.1007/BF01899296en
dc.referencesM. Stern, On radicals in lattices, Acta Scientiarum Mathematicarum, vol. 38 (1976), pp. 157–164, DOI: https://doi.org/10.2307/2372225en
dc.referencesA. Stocka, Irredundant families of maximal subgroups of finite solvable groups, International Journal of Group Theory, vol. 12 (2023), pp. 163–176, DOI: https://doi.org/10.22108/IJGT.2022.130778.1751en
dc.referencesK. Varadarajan, Dual Goldie dimension, Communications in Algebra, vol. 7 (1979), pp. 565–610, DOI: https://doi.org/10.1080/00927877908822364en
dc.referencesA. Walendziak, Relations between some dimensions of semimodular lattices, Czechoslovak Mathematical Journal, vol. 54 (2004), pp. 73–77, DOI: https://doi.org/10.1023/B:CMAJ.0000027248.02077.50en
dc.referencesD. J. A. Welsh, Matroid Theory, vol. 8 of London Mathematical Society Monographs, Academic Press, London, London (1976).en
dc.contributor.authorEmailstocka@math.uwb.edu.pl
dc.identifier.doi10.18778/0138-0680.2025.15
dc.relation.volume54


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0