Show simple item record

dc.contributor.authorPrevic, Fred H.
dc.date.accessioned2026-01-16T21:31:19Z
dc.date.available2026-01-16T21:31:19Z
dc.date.issued2025-12-22
dc.identifier.issn1898-6773
dc.identifier.urihttp://hdl.handle.net/11089/57241
dc.description.abstractModern humans are unique among anthropoids in many key features, including our advanced intelligence, large brain-body size, thermal tolerance, and endurance capability. The objective of this theoretical review is to update the theory of Previc (1999) postulating the importance of dopamine in human evolution by synthesizing newer findings concerning dopamine’s role in human intellectual and endurance capabilities. Recent evidence further supports the putative role of dopamine in advanced human intelligence (especially cognitive flexibility) and thermal tolerance and endurance. One key breakthrough is a collection of recent studies demonstrating a uniquely human dopaminergic innervation of the striatum and prefrontal cortex—both essential to human cognition. Another potentially important finding is the human-specific mutation of an enhancer to the EN1 gene that controls eccrine gland formation and plays a major role in the development of dopaminergic brain systems. A plausible evolutionary scenario is put forth in which the enhanced thermal capabilities linked to dopaminergic evolution may have gradually led to the enhanced intellects of modern humans.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesAnthropological Review;4en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectdopamineen
dc.subjectintelligenceen
dc.subjectenduranceen
dc.subjectevolutionen
dc.subjecthumanen
dc.titleThe Critical Role of Dopamine in the Evolution of Human Intelligence and Thermal Toleranceen
dc.typeArticle
dc.page.number31-51
dc.contributor.authorAffiliationDepartment of Psychology, The University of Texas at San Antonio, One UTSA Circle, San Antonio TX, USAen
dc.identifier.eissn2083-4594
dc.referencesAldea D, Atsuta Y, Kokalari B., Schaffner SF., Prasasya RD, Aharoni A, Dingwall HL, Warder B, Kamberov YG. 2021. Repeated mutation of a developmental enhancer contributed to human thermoregulatory evolution. Proc Natl Acad Sci USA 118(16): e2021722118. https://doi.org/10.1073/pnas.2021722118en
dc.referencesAldea D, Kamberov YG. 2022. En1 sweat we trust: how the evolution of an Engrailed 1 enhancer made humans the sweatiest ape. Temperature 9(4): 303–5. https://doi.org/10.1080/23328940.2021.2019548en
dc.referencesAlves dos Santos MT, Smidt MP. 2011. En1 and Wnt signaling in midbrain dopaminergic neuronal development. Neural Dev 6: 23. https://doi.org/10.1186/1749-8104-6-23en
dc.referencesAmoasii L, Sanchez-Ortiz E, Fujikawa T, Elmquist JK, Bassel-Duby R, Olson EN. 2019. NURR1 activation in skeletal muscle controls systemic energy homeostasis. Proc Natl Acad Sci USA 116(23): 11299–308. https://doi.org/10.1073/pnas.1902490116en
dc.referencesBalthazar CH, Leite LH, Ribeiro RM, Soares DD, Coimbra CC. 2010. Effects of blockade of central dopamine D1 and D2 receptors on thermoregulation, metabolic rate and running performance. Pharmacol Rep 62(1): 54-61. https://doi.org/10.1016/s1734-1140(10)70242-5en
dc.referencesBarr WA, Pobiner B, Rowan J, Du A, Faith JT. 2022. No sustained increase in zooarchaeological evidence for carnivory after the appearance of Homo erectus. Proc Natl Acad Sci USA 119(5): e2115540119. https://doi.org/10.1073/pnas.2115540119en
dc.referencesBauer BA, Rogers PJ., Miller TD., Bove AA, Tyce GM. 1989. Exercise training produces changes in free and conjugated catecholamines. Med Sci Sports Exerc 21(5): 558–562.en
dc.referencesBeasley DE, Koltz AM, Lambert JE, Fierer N, Dunn RR. 2015. The evolution of stomach acidity and its relevance to the human microbiome. PloS One 10(7): e0134116. https://doi.org/10.1371/journal.pone.0134116en
dc.referencesBednarik RG. 1995. Concept-mediated marking in the lower Palaeolithic. Curr Anthropol 36(4): 605–34. http://dx.doi.org/10.1086/204406en
dc.referencesBenyamin B, Pourcain B, Davis OS, Davies G, Hansell NK, Brion MJ, Kirkpatrick RM, Cents RA, Franić S, Miller MB, Haworth CM, Meaburn E, Price TS, Evans DM, Timpson N, Kemp J, Ring S, McArdle W, Medland SE, Yang J, … Visscher PM. 2014. Childhood intelligence is heritable, highly polygenic and associated with FNBP1L. Mol Psychiatry 19(2): 253–258. https://doi.org/10.1038/mp.2012.184en
dc.referencesBest A, Kamilar JM. 2018. The evolution of eccrine sweat glands in human and nonhuman primates. J Hum Evol 117: 33–43. https://doi.org/10.1016/j.jhevol.2017.12.003en
dc.referencesBest A, Lieberman DE, Kamilar JM. 2019. Diversity and evolution of human eccrine sweat gland density. J Therm Biol. 84: 331–8. https://doi.org/10.1016/j.jtherbio.2019.07.024en
dc.referencesBloemendaal M, Froböse MI, Wegman J, Zandbelt BB, van de Rest O, Cools R, Aarts E. 2018. Neuro-cognitive effects of acute tyrosine administration on reactive and proactive response inhibition in healthy older adults. eNeuro 30; 5(2): ENEURO.0035–17.2018. https://doi.org/10.1523/ENEURO.0035-17.2018en
dc.referencesBortz WM II. 1985. Physical exercise as an evolutionary force. J Hum Evol 14: 145–55. https://doi.org/10.1016/S0047-2484(85)80003-8en
dc.referencesBortz WM II, Angwin P, Mefford IN, Boarder MR, Noyce N, Barchas JD. 1981. Catecholamines, dopamine, and endorphin levels during extreme exercise. N Engl J Med 305(8): 466–7. https://doi.org/10.1016/S0047-2484(85)80003-8en
dc.referencesBougea A, Spantideas N, Katoulis A, Stefanis L. 2019. Levodopa-induced skin disorders in patients with Parkinson disease: a systematic literature review approach. Acta Neurol Belg 119(3): 325–36. https://doi.org/10.1007/s13760-019-01195-3en
dc.referencesBramble DM, Lieberman DE. 2004. Endurance running and the evolution of Homo. Nature 432(7015): 345–52. https://doi.org/10.1038/nature03052en
dc.referencesBrodde OE. 1982. Vascular dopamine receptors: demonstration and characterization by in vitro studies. Life Sci 31(4): 289–306. https://doi.org/10.1016/0024-3205(82)90406-4en
dc.referencesBrown PL, Bae D, Kiyatkin EA. 2007. Relationships between locomotor activation and alterations in brain temperature during selective blockade and stimulation of dopamine transmission. Neuroscience 145(1): 335–43. https://doi.org/10.1016/j.neuroscience.2006.11.028en
dc.referencesBrozoski TJ, Brown RM, Rosvold HE, Goldman PS. 1979. Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 205(4409): 929–32. https://doi.org/10.1126/science.112679en
dc.referencesCarrier DR. 1984. The energetic paradox of human running and hominid evolution. Curr Anthropol 25: 483–95. https://doi.org/10.1086/203165en
dc.referencesCharkoudian N. 2003. Skin blood flow in adult human thermoregulation: how it works, when it does not, and why. Mayo Clin Proc 78(5): 603–12. https://doi.org/10.4065/78.5.603en
dc.referencesChaudhuri KR, Todorova A, Nirenberg MJ, Parry M, Martin A, Martinez-Martin P, Rizos A, Henriksen T, Jost W, Storch A, Ebersbach G, Reichmann H, Odin P, Antonini A. 2015. A pilot prospective, multicenter observational study of dopamine agonist withdrawal syndrome in Parkinson’s Disease. Mov Disord Clin Pract 2(2): 170–4. https://doi.org/10.1002/mdc3.12141en
dc.referencesCho SS, Strafella AP. 2009. rTMS of the left dorsolateral prefrontal cortex modulates dopamine release in the ipsilateral anterior cingulate cortex and orbitofrontal cortex. PLoS One 4(8): e6725. https://doi.org/10.1371/journal.pone.0006725en
dc.referencesCoon EA, Low PA. 2018. Thermoregulation in Parkinson disease. H Clin Neurol 157: 715–25. https://doi.org/10.1016/B978-0-444-64074-1.00043-4en
dc.referencesCox B, Lee TF. 1980. Further evidence for a physiological role for hypothalamic dopamine in thermoregulation in the rat. J Physiol 300: 7–17. https://doi.org/10.1113/jphysiol.1980.sp013147en
dc.referencesClark G, Henneberg M. 2021. Cognitive and behavioral modernity in Homo erectus: skull globularity and hominin brain evolution. Anthropol Rev 84(4): 467–485. https://doi.org/10.2478/anre-2021-0030en
dc.referencesCrockett MJ. 2009. The neurochemistry of fairness: clarifying the link between serotonin and prosocial behavior. Ann N Y Acad Sci. 1167: 76–86. https://doi.org/10.1111/j.1749-6632.2009.04506.xen
dc.referencesCui CY, Childress V, Piao Y, Michel M, Johnson AA, Kunisada M, Ko MS, Kaestner KH, Marmorstein AD, Schlessinger D. 2012. Forkhead transcription factor FoxA1 regulates sweat secretion through Bestrophin 2 anion channel and Na-K-Cl cotransporter 1. Proc Natl Acad Sci USA. 109(4): 1199–203. https://doi.org/10.1073/pnas.1117213109en
dc.referencesDávid-Barrett T, Dunbar RI. 2016. Bipedality and hair loss in human evolution revisited: the impact of altitude and activity scheduling. J Hum Evol 94: 72–82. https://doi.org/10.1016/j.jhevol.2016.02.006en
dc.referencesDavies G, Marioni RE, Liewald DC, Hill WD, Hagenaars SP, Harris SE, Ritchie SJ, Luciano M, Fawns-Ritchie C, Lyall D, Cullen B, Cox SR, Hayward C, Porteous DJ, Evans J, McIntosh AM, Gallacher J, Craddock N, Pell JP, Smith DJ, Gale CR, Deary IJ. 2016. Genome-wide association study of cognitive functions and educational attainment in UK Biobank (N=112 151). Mol Psychiatry 21(6): 758–67. https://doi.org/10.1038/mp.2016.45en
dc.referencesDaw ND, Kakade S, Dayan P. 2002. Opponent interactions between serotonin and dopamine. Neural Netw 15(4–6): 603–16. https://doi.org/10.1016/s0893-6080(02)00052-7en
dc.referencesDean MC, Cole TJ. 2013. Human life history evolution explains dissociation between the timing of tooth eruption and peak rates of root growth. PloS One 8(1): e54534. https://doi.org/10.1371/journal.pone.0054534en
dc.referencesDeLouize AM, Coolidge FL, Wynn T. 2017. Dopaminergic systems expansion and the advent of Homo erectus. Quat Int 427(B): 245–52. https://doi.org/10.1016/j.quaint.2015.10.123en
dc.referencesD’Esposito M, Postle BR. 2015. The cognitive neuroscience of working memory. Annu Rev Psychol 66: 115–42. https://doi.org/10.1146/annurev-psych-010814-015031en
dc.referencesDesmond MA, Sobiecki JG, Jaworski M, Płudowski P, Antoniewicz J, Shirley MK, Eaton S, Książyk J, Cortina-Borja M, De Stavola B, Fewtrell M, Wells JCK. 2021. Growth, body composition, and cardiovascular and nutritional risk of 5- to 10-y-old children consuming vegetarian, vegan, or omnivore diets. Am J Clin Nutr 113(6): 1565–77. https://doi.org/10.1093/ajcn/nqaa445en
dc.referencesDeYoung CG, Cicchetti D, Rogosch FA, Gray JR, Eastman M, Grigorenko EL 2011. Sources of cognitive exploration: Genetic variation in the prefrontal dopamine system predicts openness/intellect. J Res Pers. 45(4): 364–371. https://doi.org/10.1016/j.jrp.2011.04.002en
dc.referencesDhugga A, Henneberg M, Kumaratilake JS. 2014. Variation of human hairiness: a possible adaptation to solar radiation and melanin. Anthropol Rev 77(2): 219–32. https://doi.org/10.2478/anre-2014-0017en
dc.referencesDi Domenico D, Mapelli L. 2023. Dopaminergic modulation of prefrontal cortex inhibition. Biomedicines 11(5): 1276. https://doi.org/10.3390/biomedicines11051276en
dc.referencesDoll HM, Risgaard RD, Thurston H, Chen RJ, Sousa AM. 2024. Evolutionary innovations in the primate dopaminergic system. Curr Opin Genet Dev 88: 102236. https://doi.org/10.1016/j.gde.2024.102236en
dc.referencesFerraro JV, Plummer TW, Pobiner BL, Oliver JS, Bishop LC, Braun DR, Ditchfield PW, Seaman JW 3rd, Binetti KM, Seaman JW Jr, Hertel F, Potts R. 2013. Earliest archaeological evidence of persistent hominin carnivory. PLoS One 8(4): e62174. https://doi.org/10.1371/journal.pone.0062174en
dc.referencesFerri AL, Lin W, Mavromatakis YE, Wang JC, Sasaki H, Whitsett JA, Ang SL. 2007. Foxa1 and Foxa2 regulate multiple phases of midbrain dopaminergic neuron development in a dosage-dependent manner. Development 134(15): 2761–9. https://doi.org/10.1242/dev.000141en
dc.referencesFuertinger S, Zinn JC, Sharan AD, Hamzei-Sichani F, Simonyan K. 2018. Dopamine drives left-hemispheric lateralization of neural networks during human speech. J Comp Neurol 526(5): 920–31. https://doi.org/10.1002/cne.24375en
dc.referencesGarcia-Garcia M, Barceló F, Clemente IC, Escera C. 2010. The role of the dopamine transporter DAT1 genotype on the neural correlates of cognitive flexibility. Eur J Neurosci 31(4): 754–60. https://doi.org/10.1111/j.1460-9568.2010.07102.xen
dc.referencesGoldman PS, Rosvold HE. 1972. The effects of selective caudate lesions in infant and juvenile Rhesus monkeys. Brain Res 43(1): 53–66. https://doi.org/10.1016/0006-8993(72)90274-0en
dc.referencesGrazioplene RG, G Ryman S, Gray JR, Rustichini A, Jung RE, DeYoung CG. 2015. Subcortical intelligence: caudate volume predicts IQ in healthy adults. Hum Brain Mapp 36(4): 1407–16. https://doi.org/10.1002/hbm.22710en
dc.referencesHart G, Burton TJ, Balleine, BW 2024. What role does striatal dopamine play in goal-directed action? Neuroscience 546: 20–32. https://doi.org/10.1016/j.neuroscience.2024.03.020en
dc.referencesHase A, Jung SE, aan het Rot M. 2015. Behavioral and cognitive effects of tyrosine intake in healthy human adults. Pharmacol Biochem Behav 133: 1–6. https://doi.org/10.1016/j.pbb.2015.03.008en
dc.referencesHenneberg M, Sarafis V. 1998. Human adaptations to meat eating. Hum Evol 13: 229–34. http://dx.doi.org/10.1007/bf02436507en
dc.referencesHirter KN, Miller EN, Stimpson CD, Phillips KA, Hopkins WD, Hof PR, Sherwood CC, Lovejoy CO, Raghanti MA. 2021. The nucleus accumbens and ventral pallidum exhibit greater dopaminergic innervation in humans compared to other primates. Brain Struct Funct 226(6): 1909–23. https://doi.org/10.1007/s00429-021-02300-0en
dc.referencesHirschbeck A, Leao DS, Wagner E, Hasan A, Roeh A. 2022. Psychiatric medication and physical performance parameters – Are there implications for treatment? Front Psychiatry 13:985983. https://doi.org/10.3389/fpsyt.2022.985983en
dc.referencesHoberg EP, Alkire NL, de Queiroz A, Jones A. 2001. Out of Africa: origins of the Taenia tapeworms in humans. Proc Biol Sci 268(1469): 781–7. https://doi.org/10.1098/rspb.2000.1579en
dc.referencesHorackova H, Karahoda R, Vachalova V, Turkova H, Abad C, Staud F. 2022. Functional characterization of dopamine and norepinephrine transport across the apical and basal plasma membranes of the human placental syncytiotrophoblast. Sci Rep 12(1): 11603. https://doi.org/10.1038/s41598-022-15790-7en
dc.referencesIkemoto K, Kitahama K, Jouvet A, Arai R, Nishimura A, Nishi K, Nagatsu I. 1997. Demonstration of L-dopa decarboxylating neurons specific to human striatum. Neurosci Lett 29;232(2): 111–4. https://doi.org/10.1016/s0304-3940(97)00587-9en
dc.referencesJablonski NG. 2021. The evolution of human skin pigmentation involved the interactions of genetic, environmental, and cultural variables. Pigment Cell Melanoma Res 34(4): 707–29. https://doi.org/10.1111/pcmr.12976en
dc.referencesJaouen K, Beasley M, Schoeninger M, Hublin JJ, Richards MP. 2016. Zinc isotope ratios of bones and teeth as new dietary indicators: results from a modern food web (Koobi Fora, Kenya). Sci Rep 6: 26281. https://doi.org/10.1038/srep26281en
dc.referencesJaouen K, Villalba-Mouco V, Smith GM, Trost M, Leichliter J, Lüdecke T, Méjean P, Mandrou S, Chmeleff J, Guiserix D, Bourgon N, Blasco F, Mendes Cardoso J, Duquenoy C, Moubtahij Z, Salazar Garcia DC, Richards M, Tütken T, Hublin JJ, Utrilla P, Montes L. 2022. A Neandertal dietary conundrum: insights provided by tooth enamel Zn isotopes from Gabasa, Spain. Proc Natl Acad Sci USA 119(43): e2109315119. https://doi.org/10.1073/pnas.2109315119en
dc.referencesKamberov YG, Guhan SM, DeMarchis A, Jiang J, Wright SS, Morgan BA, Sabeti PC, Tabin CJ, Lieberman DE. 2018. Comparative evidence for the independent evolution of hair and sweat gland traits in primates. J Hum Evol 125: 99–105. https://doi.org/10.1016/j.jhevol.2018.10.008en
dc.referencesKaminski JA, Schlagenhauf F, Rapp M, Awasthi S, Ruggeri B, Deserno L, Banaschewski T, Bokde ALW, Bromberg U, Büchel C, Quinlan EB, Desrivières S, Flor H, Frouin V, Garavan H, Gowland P, Ittermann B, Martinot JL, Martinot MP, Nees F, Orfanos DP, Paus T, Poustka L, Smolka MN, Fröhner JH, Walter H, Whelan R, Ripke S, Schumann G, Heinz A; IMAGEN consortium. 2018. Epigenetic variance in dopamine D2 receptor: a marker of IQ malleability? Transl Psychiatry 8(1): 169. https://doi.org/10.1038/s41398-018-0222-7en
dc.referencesKhalaf K, Brook AH, Smith RN. 2022. Genetic, epigenetic and environmental factors influence the phenotype of tooth number, size and shape: anterior maxillary supernumeraries and the morphology of mandibular incisors. Genes (Basel) (12): 2232. https://doi.org/10.3390/genes13122232en
dc.referencesKling A, Tucker TJ. 1967. Effects of combined lesions of frontal granular cortex and caudate nucleus in the neonatal monkey. Brain Res 6(3): 428–39. https://doi.org/10.1016/0006-8993(67)90056-xen
dc.referencesKo JH, Monchi O, Ptito A, Bloomfield P, Houle S, Strafella AP. 2008. Theta burst stimulation-induced inhibition of dorsolateral prefrontal cortex reveals hemispheric asymmetry in striatal dopamine release during a set-shifting task: a TMS-[(11) C]raclopride PET study. Eur J Neurosci 28(10): 2147–55. https://doi.org/10.1111/j.1460-9568.2008.06501.xen
dc.referencesKühn S, Düzel S, Colzato L, Norman K, Gallinat J, Brandmaier AM, Lindenberger U, Widaman KF. 2019. Food for thought: association between dietary tyrosine and cognitive performance in younger and older adults. Psychol Res. 83(6): 1097–1106. https://doi.org/10.1007/s00426-017-0957-4en
dc.referencesLangan EA, Lisztes E, Bíró T, Funk W, Kloepper JE, Griffiths CE, Paus R. 2013. Dopamine is a novel, direct inducer of catagen in human scalp hair follicles in vitro. Br J Dermatol. 168(3): 520–5. https://doi.org/10.1111/bjd.12113en
dc.referencesLarisch R, Meyer W, Klimke A, Kehren F, Vosberg H, Müller-Gärtner HW. 1998. Left-right asymmetry of striatal dopamine D2 receptors. Nucl Med Commun 19(8): 781–7. https://doi.org/10.1097/00006231-199808000-00009en
dc.referencesLarsen T, Fernandes R, Wang YV, Roberts P. 2022. Reconstructing hominin diets with stable isotope analysis of amino acids: new perspectives and future directions. Bioscience 72(7): 618–637. https://doi.org/10.1093/biosci/biac028en
dc.referencesLeclercq M, Gimenes G, Maintenant C, Clerc J. 2023. Goal choice in preschoolers is influenced by context, cognitive flexibility, and metacognition. Front Psychol 13: 1063566. https://doi.org/10.3389/fpsyg.2022.1063566en
dc.referencesLee TF, Mora F, Myers RD. 1985. Dopamine and thermoregulation: an evaluation with special reference to dopaminergic pathways. Neurosci Biobehav Rev 9(4): 589–98. https://doi.org/10.1016/0149-7634(85)90005-3en
dc.referencesLee J, Ryu HJ, Hwang SY, Koh SB. 2024. Hair loss: a well-known yet understudied symptom in Parkinson’s Disease patients during dopaminergic therapy. J Mov Disord 17(1): 47–54. https://doi.org/10.14802/jmd.23088.en
dc.referencesLe Pen G, Sonnier L, Hartmann A, Bizot JC, Trovero F, Krebs MO, Prochiantz A. 2008. Progressive loss of dopaminergic neurons in the ventral midbrain of adult mice heterozygote for Engrailed1: a new genetic model for Parkinson’s disease? Parkinsonism Relat Disord 14()2: S107–11. https://doi.org/10.1016/j.parkreldis.2008.04.007en
dc.referencesLhommée E, Batir A, Quesada JL, Ardouin C, Fraix V, Seigneuret E, Chabardès S, Benabid AL, Pollak P, Krack P. 2014. Dopamine and the biology of creativity: lessons from Parkinson’s disease. Front Neurol 5: 55. https://doi.org/10.3389/fneur.2014.00055en
dc.referencesLieberman DE. 2015. Human locomotion and heat loss: an evolutionary perspective. Compr Physiol 5(1): 99–117. https://doi.org/10.1002/cphy.c140011en
dc.referencesLinares C, Martinez-Martin P, Rodríguez-Blázquez C, Forjaz MJ, Carmona R, Díaz J. 2016. Effect of heat waves on morbidity and mortality due to Parkinson’s disease in Madrid: A time-series analysis. Environ Int 89–90: 1–6. https://doi.org/10.1016/j.envint.2016.01.017en
dc.referencesLuciana M, Collins PF, Depue, RA. 1998. Opposing roles for dopamine and serotonin in the modulation of human spatial working memory functions. Cereb Cortex 8(3): 218–26. https://doi.org/10.1093/cercor/8.3.218en
dc.referencesLucock MD. 2023. The evolution of human skin pigmentation: a changing medley of vitamins, genetic variability, and UV radiation during human expansion. Am J Biol Anthropol 180(2): 252–71. https://doi.org/10.1002/ajpa.24564en
dc.referencesMa S, Skarica M, Li Q, Xu C, Risgaard RD, Tebbenkamp ATN, Mato-Blanco X, Kovner R, Krsnik Ž, de Martin X, Luria V, Martí-Pérez X, Liang D, Karger A, Schmidt DK, Gomez-Sanchez Z, Qi C, Gobeske KT, Pochareddy S, Debnath A, Hottman CJ, Spurrier J, Teo L, Boghdadi AG, Homman-Ludiye J, Ely JJ, Daadi EW, Mi D, Daadi M, Marín O, Hof PR, Rasin MR, Bourne J, Sherwood CC, Santpere G, Girgenti MJ, Strittmatter SM, Sousa AMM, Sestan N. 2022. Molecular and cellular evolution of the primate dorsolateral prefrontal cortex. Science 377(6614): eabo7257. https://doi.org/10.1126/science.abo7257.en
dc.referencesMaranduca MA, Branisteanu D, Serban DN, Branisteanu DC, Stoleriu G, Manolache N, Serban IL. 2019. Synthesis and physiological implications of melanic pigments. Oncol Lett 17(5): 4183–7. https://doi.org/10.3892/ol.2019.10071en
dc.referencesMarques PR, Spencer RL, Burks TF, McDougal JN. 1984. Behavioral thermoregulation, core temperature, and motor activity: simultaneous quantitative assessment in rats after dopamine and prostaglandin E1. Behav Neurosci 98(5): 858–67. https://doi.org/10.1037//0735-7044.98.5.858en
dc.referencesMatsuda W, Furuta T, Nakamura KC, Hioki H, Fujiyama F, Arai R, Kaneko T. 2009. Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J Neurosci 29(2): 444–53. https://doi.org/10.1523/JNEUROSCI.4029-08.2009en
dc.referencesMatzel LD, Sauce B. 2023. A multi-faceted role of dual-state dopamine signaling in working memory, attentional control, and intelligence. Front Behav Neurosci 17: 1060786. https://doi.org/10.3389/fnbeh.2023.1060786en
dc.referencesMitchell JM, Weinstein D, Vega T, Kayser AS. 2018. Dopamine, time perception, and future time perspective. Psychopharmacology (Berl) 235(10): 2783–93. https://doi.org/10.1007/s00213-018-4971-zen
dc.referencesMontgomery AJ, McTavish SF, Cowen PJ, Grasby PM. 2003. Reduction of brain dopamine concentration with dietary tyrosine plus phenylalanine depletion: an [11C] raclopride PET study. Am J Psychiatry 160(10): 1887–9. https://doi.org/10.1176/appi.ajp.160.10.1887en
dc.referencesMosites E, Aol G, Otiang E, Bigogo G, Munyua P, Montgomery JM, Neuhouser ML, Palmer GH, Thumbi SM. 2017. Child height gain is associated with consumption of animal-source foods in livestock-owning households in Western Kenya. Public Health Nutr 20(2): 336–45. https://doi.org/10.1017/S136898001600210Xen
dc.referencesNewman EJ, Grosset DG, Kennedy PG. 2009. The parkinsonism-hyperpyrexia syndrome. Neurocrit Care 10(1): 136–40. https://doi.org/10.1007/s12028-008-9125-4.en
dc.referencesNordströma U, Beauvais G, Ghosh A, Pulikkaparambil Sasidharan BC, Lundblad M, Fuchs J, Joshi RL, Lipton JW, Roholt A, Medicetty S, Feinstein TN, Steiner JA, Escobar Galvis ML, Prochiantz A, Brundin P. 2015. Progressive nigrostriatal terminal dysfunction and degeneration in the engrailed1 heterozygous mouse model of Parkinson’s disease. Neurobiol Dis 73: 70–82. https://doi.org/10.1016/j.nbd.2014.09.012en
dc.referencesNouri N, Awatramani R. 2017. A novel floor plate boundary defined by adjacent En1 and Dbx1 microdomains distinguishes midbrain dopamine and hypothalamic neurons. Development 144(5): 916–27. https://doi.org/10.1242/dev.144949en
dc.referencesOlvera-Cortés ME, Anguiano-Rodríguez P, López-Vázquez MA, Alfaro JM. 2008. Serotonin/dopamine interaction in learning. Prog Brain Res 172: 567–602. https://doi.org/10.1016/S0079-6123(08)00927-8en
dc.referencesPalmiero M, Fusi G, Crepaldi M, Borsa VM, Rusconi ML. 2022. Divergent thinking and the core executive functions: a state-of-the-art review. Cogn Process 23(3): 341–366. https://doi.org/10.1007/s10339-022-01091-4en
dc.referencesPietschnig J, Penke L, Wicherts JM, Zeiler M, Voracek M. 2015. Meta-analysis of associations between human brain volume and intelligence differences: how strong are they and what do they mean? Neurosci Biobehav Rev 57: 411–32. https://doi.org/10.1016/j.neubiorev.2015.09.017en
dc.referencesPobiner BL. 2020. The zooarchaeology and paleoecology of early hominin scavenging. Evol Anthropol 29(2): 68–82. https://doi.org/10.1002/evan.2182en
dc.referencesPrevic FH. 1991. A general theory concerning the prenatal origins of cerebral lateralization in humans. Psychol Rev 98(3): 299–334. https://doi.org/10.1037/0033-295x.98.3.299en
dc.referencesPrevic FH. 1999. Dopamine and the origins of human intelligence. Brain Cogn 41(3): 299–350. https://doi.org/10.1006/brcg.1999.1129en
dc.referencesPrevic FH. 2009. The Dopaminergic Mind in Human Evolution and History. New York: Cambridge University Press.en
dc.referencesQuinn G. 2012. Normal genetic variation of the human foot: part 1: the paradox of normal anatomical alignment in an evolutionary epigenetic context. J Am Podiatr Med Assoc 102(1): 64–70. https://doi.org/10.7547/1020064en
dc.referencesRaghanti MA, Edler MK, Stephenson AR, Wilson LJ, Hopkins WD, Ely JJ, Erwin JM, Jacobs B, Hof PR, Sherwood CC. 2016. Human-specific increase of dopaminergic innervation in a striatal region associated with speech and language: a comparative analysis of the primate basal ganglia. J Comp Neurol 524(10): 2117–29. https://doi.org/10.1002/cne.23937en
dc.referencesRaghanti MA, Edler MK, Stephenson AR, Munger EL, Jacobs B, Hof PR, Sherwood CC, Holloway RL, Lovejoy CO. 2018. A neurochemical hypothesis for the origin of hominids. Proc Natl Acad Sci USA 115(6): E1108-E1116. https://doi.org/10.1073/pnas.1719666115en
dc.referencesRaghanti MA, Spocter MA, Stimpson CD, Erwin JM, Bonar CJ, Allman JM, Hof PR, Sherwood CC. 2009. Species-specific distributions of tyrosine hydroxylase-immunoreactive neurons in the prefrontal cortex of anthropoid primates. Neuroscience 158(4): 1551–9. https://doi.org/10.1016/j.neuroscience.2008.10.058en
dc.referencesRanganath A, Jacob SN. 2016. Doping the mind: dopaminergic modulation of prefrontal cortical cognition. Neuroscientist 22(6): 593–603. https://doi.org/10.1177/1073858415602850en
dc.referencesRusz J, Dusek P, Tykalova T, Novotny M, Illner V, Simek M, Kouba T, Kryze P, Zogala D, Ruzicka E, Sousa M, Jorge A, Nef T, Krack P. 2024. Is speech function lateralised in the basal ganglia? Evidence from de novo Parkinson’s disease. J Neurol Neurosurg Psychiatry jnnp-2024-334297. https://doi.org/10.1136/jnnp-2024-334297en
dc.referencesRuxton GD, Wilkinson DM. 2011. Avoidance of overheating and selection for both hair loss and bipedality in hominins. Proc Natl Acad Sci USA 108(52): 20965–9. https://doi.org/10.1073/pnas.1113915108en
dc.referencesSaniotis A, Grantham JP, Kumaratilake JS, Henneberg M, Mohammadi K. 2021. Going beyond brain size: An evolutionary overview of serotonergic regulation in human higher cortical functions. Anthropologie 59(1): 101–6. https://doi.org/10.26720/anthro.20.08.1en
dc.referencesScott IM, Boulant JA. 1984. Dopamine effects on thermosensitive neurons in hypothalamic tissue slices. Brain Res 306(1–2): 157–163. https://doi.org/10.1016/0006-8993(84)90364-0en
dc.referencesShibasaki M, Crandall CG. 2010. Mechanisms and controllers of eccrine sweating in humans. Front Biosci (Schol Ed) 2(2): 685–96. https://doi.org/10.2741/s94en
dc.referencesSimon HH, Thuret S, Alberi L. 2004. Midbrain dopaminergic neurons: control of their cell fate by the engrailed transcription factors. Cell Tissue Res 318(1): 53–61. https://doi.org/10.1007/s00441-004-0973-8en
dc.referencesSimonyan K, Herscovitch P, Horwitz B. 2013. Speech-induced striatal dopamine release is left lateralized and coupled to functional striatal circuits in healthy humans: a combined PET, fMRI and DTI study. Neuroimage 70: 21–32. https://doi.org/10.1016/j.neuroimage.2012.12.042en
dc.referencesSmith JW, Bello ML, Price FG. 2021. A case-series observation of sweat rate variability in endurance-trained athletes. Nutrients 13(6): 1807. https://doi.org/10.3390/nu13061807en
dc.referencesSniekers S, Stringer S, Watanabe K, Jansen PR, Coleman JRI, Krapohl E, Taskesen E, Hammerschlag AR, Okbay A, Zabaneh D, Amin N, Breen G, Cesarini D, Chabris CF, Iacono WG, Ikram MA, Johannesson M, Koellinger P, Lee JJ, Magnusson PKE, McGue M, Miller MB, Ollier WER, Payton A, Pendleton N, Plomin R, Rietveld CA, Tiemeier H, van Duijn CM, Posthuma D. 2017. Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence. Nat Genet 49(10): 1558. https://doi.org/10.1038/ng1017-1558c. Erratum for: Nat Genet. 2017 49(7): 1107–1112. https://doi.org/10.1038/ng.3869en
dc.referencesSousa AMM, Zhu Y, Raghanti MA, Kitchen RR, Onorati M, Tebbenkamp ATN, Stutz B, Meyer KA, Li M, Kawasawa YI, Liu F, Perez RG, Mele M, Carvalho T, Skarica M, Gulden FO, Pletikos M, Shibata A, Stephenson AR, Edler MK, Ely JJ, Elsworth JD, Horvath TL, Hof PR, Hyde TM, Kleinman JE, Weinberger DR, Reimers M, Lifton RP, Mane SM, Noonan JP, State MW, Lein ES, Knowles JA, Marques-Bonet T, Sherwood CC, Gerstein MB, Sestan N. 2017. Molecular and cellular reorganization of neural circuits in the human lineage. Science 358(6366): 1027–32. https://doi.org/10.1126/science.aan3456en
dc.referencesStanley SM. 1995. Climatic forcing and the origin of the human genus. W: National Research Council (US) Panel on Effects of Past Global Change on Life. Washington, DC: National Academies Press, 233–43.en
dc.referencesSuzuki T. 1981. How great will the stature of Japanese eventually become? J Hum Ergol (Tokyo) 10(1): 13–24.en
dc.referencesTakeuchi H, Taki Y, Sekiguchi A, Nouchi R, Kotozaki Y, Nakagawa S, Miyauchi CM, Iizuka K, Yokoyama R, Shinada T, Yamamoto Y, Hanawa S, Araki T, Hashizume H. 2014. Creativity measured by divergent thinking is associated with two axes of autistic characteristics. Front Psychol 5: 921. https://doi.org/10.3389/fpsyg.2014.00921en
dc.referencesTaki Y, Hashizume H, Sassa Y, Takeuchi H, Asano M, Asano K, Kotozaki Y, Nouchi R, Wu K, Fukuda H, Kawashima R. 2012. Correlation among body height, intelligence, and brain gray matter volume in healthy children. Neuroimage 59(2): 1023–7. https://doi.org/10.1016/j.neuroimage.2011.08.092en
dc.referencesTam CS, Johnson WD, Rood J, Heaton AL, Greenway FL. 2020. Increased human growth hormone after oral consumption of an amino acid supplement: results of a randomized, placebo-controlled, double-blind, crossover study in healthy subjects. Am J Ther. 27(4): e333–e337. https://doi.org/10.1097/MJT.0000000000000893en
dc.referencesTaylor KM, Giersch GEW, Caldwell AR, Epstein Y, Charkoudian N. 2024. Relation of body surface area-to-mass ratio to risk of exertional heat stroke in healthy men and women. J Appl Physiol (1985). 136(3): 549–54. https://doi.org/10.1152/japplphysiol.00597.2023en
dc.referencesTilkens MJ, Wall-Scheffler C, Weaver TD, Steudel-Numbers K. 2007. The effects of body proportions on thermoregulation: an experimental assessment of Allen’s rule. J Hum Evol 53(3): 286–91. https://doi.org/10.1016/j.jhevol.2007.04.005en
dc.referencesTong J, Hornykiewicz O, Kish SJ. 2006. Inverse relationship between brain noradrenaline level and dopamine loss in Parkinson disease: a possible neuroprotective role for noradrenaline. Arch Neurol 63(12): 1724-8. https://doi.org/10.1001/archneur.63.12.1724en
dc.referencesTormoehlen LM, Rusyniak DE. 2018. Neuroleptic malignant syndrome and serotonin syndrome. Handb Clin Neurol 157: 663–75. https://doi.org/10.1016/B978-0-444-64074-1.00039-2en
dc.referencesToups MA, Kitchen A, Light JE, Reed DL. 2011. Origin of clothing lice indicates early clothing use by anatomically modern humans in Africa. Mol Biol Evol 28(1): 29–32. https://doi.org/10.1093/molbev/msq234en
dc.referencesTyler J, Podaras M, Richardson B, Roeder N, Hammond N, Hamilton J, Blum K, Gold M, Baron DA, Thanos PK. 2023. High intensity interval training exercise increases dopamine D2 levels and modulates brain dopamine signaling. Front Public Health 11: 1257629. https://doi.org/10.3389/fpubh.2023.1257629en
dc.referencesWang L, Yin H, Di Y, Liu Y, Liu J. 2016. Human local and total heat losses in different temperature. Physiol Behav 157: 270–6. https://doi.org/10.1016/j.physbeh.2016.02.018en
dc.referencesWeydt P, Dupuis L, Petersen Å. 2018. Thermoregulatory disorders in Huntington disease. Handb Clin Neurol 157: 761–75. https://doi.org/10.1016/B978-0-444-64074-1.00047-1en
dc.referencesWheeler PE. 1985. The loss of functional body hair in man: the influence of thermal environment, body form and bipedality. J Hum Evol 14: 23–8. https://doi.org/10.1016/S0047-2484(85)80091-9en
dc.referencesWill M, Pablos A, Stock JT. 2017. Long-term patterns of body mass and stature evolution within the hominin lineage. R Soc Open Sci 4(11): 171339. https://doi.org/10.1098/rsos.171339en
dc.referencesYuan T, Ying J, Jin L, Li C, Gui S, Li Z, Wang R, Zuo Z, Zhang Y. 2020. The role of serum growth hormone and insulin-like growth factor-1 in adult humans brain morphology. Aging (Albany NY). 12(2): 1377–96. https://doi.org/10.18632/aging.102688. Erratum in: Aging (Albany NY). 2021 Sep 29;13(18): 22623–22624. https://doi.org/10.18632/aging.203601en
dc.referencesZabelina DL, Colzato L, Beeman M, Hommel B. 2016. Dopamine and the creative mind: individual differences in creativity are predicted by interactions between dopamine genes DAT and COMT. PLoS One 11(1): e0146768. https://doi.org/10.1371/journal.pone.0146768en
dc.referencesZheng X, Hasegawa H. 2016. Central dopaminergic neurotransmission plays an important role in thermoregulation and performance during endurance exercise. Eur J Sport Sci 16(7): 818–28. https://doi.org/10.1080/17461391.2015.1111938en
dc.referencesZink KD, Lieberman DE. 2016. Impact of meat and Lower Palaeolithic food processing techniques on chewing in humans. Nature 531(7595): 500–3. https://doi.org/10.1038/nature16990en
dc.contributor.authorEmailfprevic@gmail.com
dc.identifier.doi10.18778/1898-6773.88.4.02
dc.relation.volume88


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0