| dc.contributor.author | Previc, Fred H. | |
| dc.date.accessioned | 2026-01-16T21:31:19Z | |
| dc.date.available | 2026-01-16T21:31:19Z | |
| dc.date.issued | 2025-12-22 | |
| dc.identifier.issn | 1898-6773 | |
| dc.identifier.uri | http://hdl.handle.net/11089/57241 | |
| dc.description.abstract | Modern humans are unique among anthropoids in many key features, including our advanced intelligence, large brain-body size, thermal tolerance, and endurance capability. The objective of this theoretical review is to update the theory of Previc (1999) postulating the importance of dopamine in human evolution by synthesizing newer findings concerning dopamine’s role in human intellectual and endurance capabilities. Recent evidence further supports the putative role of dopamine in advanced human intelligence (especially cognitive flexibility) and thermal tolerance and endurance. One key breakthrough is a collection of recent studies demonstrating a uniquely human dopaminergic innervation of the striatum and prefrontal cortex—both essential to human cognition. Another potentially important finding is the human-specific mutation of an enhancer to the EN1 gene that controls eccrine gland formation and plays a major role in the development of dopaminergic brain systems. A plausible evolutionary scenario is put forth in which the enhanced thermal capabilities linked to dopaminergic evolution may have gradually led to the enhanced intellects of modern humans. | en |
| dc.language.iso | en | |
| dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
| dc.relation.ispartofseries | Anthropological Review;4 | en |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
| dc.subject | dopamine | en |
| dc.subject | intelligence | en |
| dc.subject | endurance | en |
| dc.subject | evolution | en |
| dc.subject | human | en |
| dc.title | The Critical Role of Dopamine in the Evolution of Human Intelligence and Thermal Tolerance | en |
| dc.type | Article | |
| dc.page.number | 31-51 | |
| dc.contributor.authorAffiliation | Department of Psychology, The University of Texas at San Antonio, One UTSA Circle, San Antonio TX, USA | en |
| dc.identifier.eissn | 2083-4594 | |
| dc.references | Aldea D, Atsuta Y, Kokalari B., Schaffner SF., Prasasya RD, Aharoni A, Dingwall HL, Warder B, Kamberov YG. 2021. Repeated mutation of a developmental enhancer contributed to human thermoregulatory evolution. Proc Natl Acad Sci USA 118(16): e2021722118. https://doi.org/10.1073/pnas.2021722118 | en |
| dc.references | Aldea D, Kamberov YG. 2022. En1 sweat we trust: how the evolution of an Engrailed 1 enhancer made humans the sweatiest ape. Temperature 9(4): 303–5. https://doi.org/10.1080/23328940.2021.2019548 | en |
| dc.references | Alves dos Santos MT, Smidt MP. 2011. En1 and Wnt signaling in midbrain dopaminergic neuronal development. Neural Dev 6: 23. https://doi.org/10.1186/1749-8104-6-23 | en |
| dc.references | Amoasii L, Sanchez-Ortiz E, Fujikawa T, Elmquist JK, Bassel-Duby R, Olson EN. 2019. NURR1 activation in skeletal muscle controls systemic energy homeostasis. Proc Natl Acad Sci USA 116(23): 11299–308. https://doi.org/10.1073/pnas.1902490116 | en |
| dc.references | Balthazar CH, Leite LH, Ribeiro RM, Soares DD, Coimbra CC. 2010. Effects of blockade of central dopamine D1 and D2 receptors on thermoregulation, metabolic rate and running performance. Pharmacol Rep 62(1): 54-61. https://doi.org/10.1016/s1734-1140(10)70242-5 | en |
| dc.references | Barr WA, Pobiner B, Rowan J, Du A, Faith JT. 2022. No sustained increase in zooarchaeological evidence for carnivory after the appearance of Homo erectus. Proc Natl Acad Sci USA 119(5): e2115540119. https://doi.org/10.1073/pnas.2115540119 | en |
| dc.references | Bauer BA, Rogers PJ., Miller TD., Bove AA, Tyce GM. 1989. Exercise training produces changes in free and conjugated catecholamines. Med Sci Sports Exerc 21(5): 558–562. | en |
| dc.references | Beasley DE, Koltz AM, Lambert JE, Fierer N, Dunn RR. 2015. The evolution of stomach acidity and its relevance to the human microbiome. PloS One 10(7): e0134116. https://doi.org/10.1371/journal.pone.0134116 | en |
| dc.references | Bednarik RG. 1995. Concept-mediated marking in the lower Palaeolithic. Curr Anthropol 36(4): 605–34. http://dx.doi.org/10.1086/204406 | en |
| dc.references | Benyamin B, Pourcain B, Davis OS, Davies G, Hansell NK, Brion MJ, Kirkpatrick RM, Cents RA, Franić S, Miller MB, Haworth CM, Meaburn E, Price TS, Evans DM, Timpson N, Kemp J, Ring S, McArdle W, Medland SE, Yang J, … Visscher PM. 2014. Childhood intelligence is heritable, highly polygenic and associated with FNBP1L. Mol Psychiatry 19(2): 253–258. https://doi.org/10.1038/mp.2012.184 | en |
| dc.references | Best A, Kamilar JM. 2018. The evolution of eccrine sweat glands in human and nonhuman primates. J Hum Evol 117: 33–43. https://doi.org/10.1016/j.jhevol.2017.12.003 | en |
| dc.references | Best A, Lieberman DE, Kamilar JM. 2019. Diversity and evolution of human eccrine sweat gland density. J Therm Biol. 84: 331–8. https://doi.org/10.1016/j.jtherbio.2019.07.024 | en |
| dc.references | Bloemendaal M, Froböse MI, Wegman J, Zandbelt BB, van de Rest O, Cools R, Aarts E. 2018. Neuro-cognitive effects of acute tyrosine administration on reactive and proactive response inhibition in healthy older adults. eNeuro 30; 5(2): ENEURO.0035–17.2018. https://doi.org/10.1523/ENEURO.0035-17.2018 | en |
| dc.references | Bortz WM II. 1985. Physical exercise as an evolutionary force. J Hum Evol 14: 145–55. https://doi.org/10.1016/S0047-2484(85)80003-8 | en |
| dc.references | Bortz WM II, Angwin P, Mefford IN, Boarder MR, Noyce N, Barchas JD. 1981. Catecholamines, dopamine, and endorphin levels during extreme exercise. N Engl J Med 305(8): 466–7. https://doi.org/10.1016/S0047-2484(85)80003-8 | en |
| dc.references | Bougea A, Spantideas N, Katoulis A, Stefanis L. 2019. Levodopa-induced skin disorders in patients with Parkinson disease: a systematic literature review approach. Acta Neurol Belg 119(3): 325–36. https://doi.org/10.1007/s13760-019-01195-3 | en |
| dc.references | Bramble DM, Lieberman DE. 2004. Endurance running and the evolution of Homo. Nature 432(7015): 345–52. https://doi.org/10.1038/nature03052 | en |
| dc.references | Brodde OE. 1982. Vascular dopamine receptors: demonstration and characterization by in vitro studies. Life Sci 31(4): 289–306. https://doi.org/10.1016/0024-3205(82)90406-4 | en |
| dc.references | Brown PL, Bae D, Kiyatkin EA. 2007. Relationships between locomotor activation and alterations in brain temperature during selective blockade and stimulation of dopamine transmission. Neuroscience 145(1): 335–43. https://doi.org/10.1016/j.neuroscience.2006.11.028 | en |
| dc.references | Brozoski TJ, Brown RM, Rosvold HE, Goldman PS. 1979. Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 205(4409): 929–32. https://doi.org/10.1126/science.112679 | en |
| dc.references | Carrier DR. 1984. The energetic paradox of human running and hominid evolution. Curr Anthropol 25: 483–95. https://doi.org/10.1086/203165 | en |
| dc.references | Charkoudian N. 2003. Skin blood flow in adult human thermoregulation: how it works, when it does not, and why. Mayo Clin Proc 78(5): 603–12. https://doi.org/10.4065/78.5.603 | en |
| dc.references | Chaudhuri KR, Todorova A, Nirenberg MJ, Parry M, Martin A, Martinez-Martin P, Rizos A, Henriksen T, Jost W, Storch A, Ebersbach G, Reichmann H, Odin P, Antonini A. 2015. A pilot prospective, multicenter observational study of dopamine agonist withdrawal syndrome in Parkinson’s Disease. Mov Disord Clin Pract 2(2): 170–4. https://doi.org/10.1002/mdc3.12141 | en |
| dc.references | Cho SS, Strafella AP. 2009. rTMS of the left dorsolateral prefrontal cortex modulates dopamine release in the ipsilateral anterior cingulate cortex and orbitofrontal cortex. PLoS One 4(8): e6725. https://doi.org/10.1371/journal.pone.0006725 | en |
| dc.references | Coon EA, Low PA. 2018. Thermoregulation in Parkinson disease. H Clin Neurol 157: 715–25. https://doi.org/10.1016/B978-0-444-64074-1.00043-4 | en |
| dc.references | Cox B, Lee TF. 1980. Further evidence for a physiological role for hypothalamic dopamine in thermoregulation in the rat. J Physiol 300: 7–17. https://doi.org/10.1113/jphysiol.1980.sp013147 | en |
| dc.references | Clark G, Henneberg M. 2021. Cognitive and behavioral modernity in Homo erectus: skull globularity and hominin brain evolution. Anthropol Rev 84(4): 467–485. https://doi.org/10.2478/anre-2021-0030 | en |
| dc.references | Crockett MJ. 2009. The neurochemistry of fairness: clarifying the link between serotonin and prosocial behavior. Ann N Y Acad Sci. 1167: 76–86. https://doi.org/10.1111/j.1749-6632.2009.04506.x | en |
| dc.references | Cui CY, Childress V, Piao Y, Michel M, Johnson AA, Kunisada M, Ko MS, Kaestner KH, Marmorstein AD, Schlessinger D. 2012. Forkhead transcription factor FoxA1 regulates sweat secretion through Bestrophin 2 anion channel and Na-K-Cl cotransporter 1. Proc Natl Acad Sci USA. 109(4): 1199–203. https://doi.org/10.1073/pnas.1117213109 | en |
| dc.references | Dávid-Barrett T, Dunbar RI. 2016. Bipedality and hair loss in human evolution revisited: the impact of altitude and activity scheduling. J Hum Evol 94: 72–82. https://doi.org/10.1016/j.jhevol.2016.02.006 | en |
| dc.references | Davies G, Marioni RE, Liewald DC, Hill WD, Hagenaars SP, Harris SE, Ritchie SJ, Luciano M, Fawns-Ritchie C, Lyall D, Cullen B, Cox SR, Hayward C, Porteous DJ, Evans J, McIntosh AM, Gallacher J, Craddock N, Pell JP, Smith DJ, Gale CR, Deary IJ. 2016. Genome-wide association study of cognitive functions and educational attainment in UK Biobank (N=112 151). Mol Psychiatry 21(6): 758–67. https://doi.org/10.1038/mp.2016.45 | en |
| dc.references | Daw ND, Kakade S, Dayan P. 2002. Opponent interactions between serotonin and dopamine. Neural Netw 15(4–6): 603–16. https://doi.org/10.1016/s0893-6080(02)00052-7 | en |
| dc.references | Dean MC, Cole TJ. 2013. Human life history evolution explains dissociation between the timing of tooth eruption and peak rates of root growth. PloS One 8(1): e54534. https://doi.org/10.1371/journal.pone.0054534 | en |
| dc.references | DeLouize AM, Coolidge FL, Wynn T. 2017. Dopaminergic systems expansion and the advent of Homo erectus. Quat Int 427(B): 245–52. https://doi.org/10.1016/j.quaint.2015.10.123 | en |
| dc.references | D’Esposito M, Postle BR. 2015. The cognitive neuroscience of working memory. Annu Rev Psychol 66: 115–42. https://doi.org/10.1146/annurev-psych-010814-015031 | en |
| dc.references | Desmond MA, Sobiecki JG, Jaworski M, Płudowski P, Antoniewicz J, Shirley MK, Eaton S, Książyk J, Cortina-Borja M, De Stavola B, Fewtrell M, Wells JCK. 2021. Growth, body composition, and cardiovascular and nutritional risk of 5- to 10-y-old children consuming vegetarian, vegan, or omnivore diets. Am J Clin Nutr 113(6): 1565–77. https://doi.org/10.1093/ajcn/nqaa445 | en |
| dc.references | DeYoung CG, Cicchetti D, Rogosch FA, Gray JR, Eastman M, Grigorenko EL 2011. Sources of cognitive exploration: Genetic variation in the prefrontal dopamine system predicts openness/intellect. J Res Pers. 45(4): 364–371. https://doi.org/10.1016/j.jrp.2011.04.002 | en |
| dc.references | Dhugga A, Henneberg M, Kumaratilake JS. 2014. Variation of human hairiness: a possible adaptation to solar radiation and melanin. Anthropol Rev 77(2): 219–32. https://doi.org/10.2478/anre-2014-0017 | en |
| dc.references | Di Domenico D, Mapelli L. 2023. Dopaminergic modulation of prefrontal cortex inhibition. Biomedicines 11(5): 1276. https://doi.org/10.3390/biomedicines11051276 | en |
| dc.references | Doll HM, Risgaard RD, Thurston H, Chen RJ, Sousa AM. 2024. Evolutionary innovations in the primate dopaminergic system. Curr Opin Genet Dev 88: 102236. https://doi.org/10.1016/j.gde.2024.102236 | en |
| dc.references | Ferraro JV, Plummer TW, Pobiner BL, Oliver JS, Bishop LC, Braun DR, Ditchfield PW, Seaman JW 3rd, Binetti KM, Seaman JW Jr, Hertel F, Potts R. 2013. Earliest archaeological evidence of persistent hominin carnivory. PLoS One 8(4): e62174. https://doi.org/10.1371/journal.pone.0062174 | en |
| dc.references | Ferri AL, Lin W, Mavromatakis YE, Wang JC, Sasaki H, Whitsett JA, Ang SL. 2007. Foxa1 and Foxa2 regulate multiple phases of midbrain dopaminergic neuron development in a dosage-dependent manner. Development 134(15): 2761–9. https://doi.org/10.1242/dev.000141 | en |
| dc.references | Fuertinger S, Zinn JC, Sharan AD, Hamzei-Sichani F, Simonyan K. 2018. Dopamine drives left-hemispheric lateralization of neural networks during human speech. J Comp Neurol 526(5): 920–31. https://doi.org/10.1002/cne.24375 | en |
| dc.references | Garcia-Garcia M, Barceló F, Clemente IC, Escera C. 2010. The role of the dopamine transporter DAT1 genotype on the neural correlates of cognitive flexibility. Eur J Neurosci 31(4): 754–60. https://doi.org/10.1111/j.1460-9568.2010.07102.x | en |
| dc.references | Goldman PS, Rosvold HE. 1972. The effects of selective caudate lesions in infant and juvenile Rhesus monkeys. Brain Res 43(1): 53–66. https://doi.org/10.1016/0006-8993(72)90274-0 | en |
| dc.references | Grazioplene RG, G Ryman S, Gray JR, Rustichini A, Jung RE, DeYoung CG. 2015. Subcortical intelligence: caudate volume predicts IQ in healthy adults. Hum Brain Mapp 36(4): 1407–16. https://doi.org/10.1002/hbm.22710 | en |
| dc.references | Hart G, Burton TJ, Balleine, BW 2024. What role does striatal dopamine play in goal-directed action? Neuroscience 546: 20–32. https://doi.org/10.1016/j.neuroscience.2024.03.020 | en |
| dc.references | Hase A, Jung SE, aan het Rot M. 2015. Behavioral and cognitive effects of tyrosine intake in healthy human adults. Pharmacol Biochem Behav 133: 1–6. https://doi.org/10.1016/j.pbb.2015.03.008 | en |
| dc.references | Henneberg M, Sarafis V. 1998. Human adaptations to meat eating. Hum Evol 13: 229–34. http://dx.doi.org/10.1007/bf02436507 | en |
| dc.references | Hirter KN, Miller EN, Stimpson CD, Phillips KA, Hopkins WD, Hof PR, Sherwood CC, Lovejoy CO, Raghanti MA. 2021. The nucleus accumbens and ventral pallidum exhibit greater dopaminergic innervation in humans compared to other primates. Brain Struct Funct 226(6): 1909–23. https://doi.org/10.1007/s00429-021-02300-0 | en |
| dc.references | Hirschbeck A, Leao DS, Wagner E, Hasan A, Roeh A. 2022. Psychiatric medication and physical performance parameters – Are there implications for treatment? Front Psychiatry 13:985983. https://doi.org/10.3389/fpsyt.2022.985983 | en |
| dc.references | Hoberg EP, Alkire NL, de Queiroz A, Jones A. 2001. Out of Africa: origins of the Taenia tapeworms in humans. Proc Biol Sci 268(1469): 781–7. https://doi.org/10.1098/rspb.2000.1579 | en |
| dc.references | Horackova H, Karahoda R, Vachalova V, Turkova H, Abad C, Staud F. 2022. Functional characterization of dopamine and norepinephrine transport across the apical and basal plasma membranes of the human placental syncytiotrophoblast. Sci Rep 12(1): 11603. https://doi.org/10.1038/s41598-022-15790-7 | en |
| dc.references | Ikemoto K, Kitahama K, Jouvet A, Arai R, Nishimura A, Nishi K, Nagatsu I. 1997. Demonstration of L-dopa decarboxylating neurons specific to human striatum. Neurosci Lett 29;232(2): 111–4. https://doi.org/10.1016/s0304-3940(97)00587-9 | en |
| dc.references | Jablonski NG. 2021. The evolution of human skin pigmentation involved the interactions of genetic, environmental, and cultural variables. Pigment Cell Melanoma Res 34(4): 707–29. https://doi.org/10.1111/pcmr.12976 | en |
| dc.references | Jaouen K, Beasley M, Schoeninger M, Hublin JJ, Richards MP. 2016. Zinc isotope ratios of bones and teeth as new dietary indicators: results from a modern food web (Koobi Fora, Kenya). Sci Rep 6: 26281. https://doi.org/10.1038/srep26281 | en |
| dc.references | Jaouen K, Villalba-Mouco V, Smith GM, Trost M, Leichliter J, Lüdecke T, Méjean P, Mandrou S, Chmeleff J, Guiserix D, Bourgon N, Blasco F, Mendes Cardoso J, Duquenoy C, Moubtahij Z, Salazar Garcia DC, Richards M, Tütken T, Hublin JJ, Utrilla P, Montes L. 2022. A Neandertal dietary conundrum: insights provided by tooth enamel Zn isotopes from Gabasa, Spain. Proc Natl Acad Sci USA 119(43): e2109315119. https://doi.org/10.1073/pnas.2109315119 | en |
| dc.references | Kamberov YG, Guhan SM, DeMarchis A, Jiang J, Wright SS, Morgan BA, Sabeti PC, Tabin CJ, Lieberman DE. 2018. Comparative evidence for the independent evolution of hair and sweat gland traits in primates. J Hum Evol 125: 99–105. https://doi.org/10.1016/j.jhevol.2018.10.008 | en |
| dc.references | Kaminski JA, Schlagenhauf F, Rapp M, Awasthi S, Ruggeri B, Deserno L, Banaschewski T, Bokde ALW, Bromberg U, Büchel C, Quinlan EB, Desrivières S, Flor H, Frouin V, Garavan H, Gowland P, Ittermann B, Martinot JL, Martinot MP, Nees F, Orfanos DP, Paus T, Poustka L, Smolka MN, Fröhner JH, Walter H, Whelan R, Ripke S, Schumann G, Heinz A; IMAGEN consortium. 2018. Epigenetic variance in dopamine D2 receptor: a marker of IQ malleability? Transl Psychiatry 8(1): 169. https://doi.org/10.1038/s41398-018-0222-7 | en |
| dc.references | Khalaf K, Brook AH, Smith RN. 2022. Genetic, epigenetic and environmental factors influence the phenotype of tooth number, size and shape: anterior maxillary supernumeraries and the morphology of mandibular incisors. Genes (Basel) (12): 2232. https://doi.org/10.3390/genes13122232 | en |
| dc.references | Kling A, Tucker TJ. 1967. Effects of combined lesions of frontal granular cortex and caudate nucleus in the neonatal monkey. Brain Res 6(3): 428–39. https://doi.org/10.1016/0006-8993(67)90056-x | en |
| dc.references | Ko JH, Monchi O, Ptito A, Bloomfield P, Houle S, Strafella AP. 2008. Theta burst stimulation-induced inhibition of dorsolateral prefrontal cortex reveals hemispheric asymmetry in striatal dopamine release during a set-shifting task: a TMS-[(11) C]raclopride PET study. Eur J Neurosci 28(10): 2147–55. https://doi.org/10.1111/j.1460-9568.2008.06501.x | en |
| dc.references | Kühn S, Düzel S, Colzato L, Norman K, Gallinat J, Brandmaier AM, Lindenberger U, Widaman KF. 2019. Food for thought: association between dietary tyrosine and cognitive performance in younger and older adults. Psychol Res. 83(6): 1097–1106. https://doi.org/10.1007/s00426-017-0957-4 | en |
| dc.references | Langan EA, Lisztes E, Bíró T, Funk W, Kloepper JE, Griffiths CE, Paus R. 2013. Dopamine is a novel, direct inducer of catagen in human scalp hair follicles in vitro. Br J Dermatol. 168(3): 520–5. https://doi.org/10.1111/bjd.12113 | en |
| dc.references | Larisch R, Meyer W, Klimke A, Kehren F, Vosberg H, Müller-Gärtner HW. 1998. Left-right asymmetry of striatal dopamine D2 receptors. Nucl Med Commun 19(8): 781–7. https://doi.org/10.1097/00006231-199808000-00009 | en |
| dc.references | Larsen T, Fernandes R, Wang YV, Roberts P. 2022. Reconstructing hominin diets with stable isotope analysis of amino acids: new perspectives and future directions. Bioscience 72(7): 618–637. https://doi.org/10.1093/biosci/biac028 | en |
| dc.references | Leclercq M, Gimenes G, Maintenant C, Clerc J. 2023. Goal choice in preschoolers is influenced by context, cognitive flexibility, and metacognition. Front Psychol 13: 1063566. https://doi.org/10.3389/fpsyg.2022.1063566 | en |
| dc.references | Lee TF, Mora F, Myers RD. 1985. Dopamine and thermoregulation: an evaluation with special reference to dopaminergic pathways. Neurosci Biobehav Rev 9(4): 589–98. https://doi.org/10.1016/0149-7634(85)90005-3 | en |
| dc.references | Lee J, Ryu HJ, Hwang SY, Koh SB. 2024. Hair loss: a well-known yet understudied symptom in Parkinson’s Disease patients during dopaminergic therapy. J Mov Disord 17(1): 47–54. https://doi.org/10.14802/jmd.23088. | en |
| dc.references | Le Pen G, Sonnier L, Hartmann A, Bizot JC, Trovero F, Krebs MO, Prochiantz A. 2008. Progressive loss of dopaminergic neurons in the ventral midbrain of adult mice heterozygote for Engrailed1: a new genetic model for Parkinson’s disease? Parkinsonism Relat Disord 14()2: S107–11. https://doi.org/10.1016/j.parkreldis.2008.04.007 | en |
| dc.references | Lhommée E, Batir A, Quesada JL, Ardouin C, Fraix V, Seigneuret E, Chabardès S, Benabid AL, Pollak P, Krack P. 2014. Dopamine and the biology of creativity: lessons from Parkinson’s disease. Front Neurol 5: 55. https://doi.org/10.3389/fneur.2014.00055 | en |
| dc.references | Lieberman DE. 2015. Human locomotion and heat loss: an evolutionary perspective. Compr Physiol 5(1): 99–117. https://doi.org/10.1002/cphy.c140011 | en |
| dc.references | Linares C, Martinez-Martin P, Rodríguez-Blázquez C, Forjaz MJ, Carmona R, Díaz J. 2016. Effect of heat waves on morbidity and mortality due to Parkinson’s disease in Madrid: A time-series analysis. Environ Int 89–90: 1–6. https://doi.org/10.1016/j.envint.2016.01.017 | en |
| dc.references | Luciana M, Collins PF, Depue, RA. 1998. Opposing roles for dopamine and serotonin in the modulation of human spatial working memory functions. Cereb Cortex 8(3): 218–26. https://doi.org/10.1093/cercor/8.3.218 | en |
| dc.references | Lucock MD. 2023. The evolution of human skin pigmentation: a changing medley of vitamins, genetic variability, and UV radiation during human expansion. Am J Biol Anthropol 180(2): 252–71. https://doi.org/10.1002/ajpa.24564 | en |
| dc.references | Ma S, Skarica M, Li Q, Xu C, Risgaard RD, Tebbenkamp ATN, Mato-Blanco X, Kovner R, Krsnik Ž, de Martin X, Luria V, Martí-Pérez X, Liang D, Karger A, Schmidt DK, Gomez-Sanchez Z, Qi C, Gobeske KT, Pochareddy S, Debnath A, Hottman CJ, Spurrier J, Teo L, Boghdadi AG, Homman-Ludiye J, Ely JJ, Daadi EW, Mi D, Daadi M, Marín O, Hof PR, Rasin MR, Bourne J, Sherwood CC, Santpere G, Girgenti MJ, Strittmatter SM, Sousa AMM, Sestan N. 2022. Molecular and cellular evolution of the primate dorsolateral prefrontal cortex. Science 377(6614): eabo7257. https://doi.org/10.1126/science.abo7257. | en |
| dc.references | Maranduca MA, Branisteanu D, Serban DN, Branisteanu DC, Stoleriu G, Manolache N, Serban IL. 2019. Synthesis and physiological implications of melanic pigments. Oncol Lett 17(5): 4183–7. https://doi.org/10.3892/ol.2019.10071 | en |
| dc.references | Marques PR, Spencer RL, Burks TF, McDougal JN. 1984. Behavioral thermoregulation, core temperature, and motor activity: simultaneous quantitative assessment in rats after dopamine and prostaglandin E1. Behav Neurosci 98(5): 858–67. https://doi.org/10.1037//0735-7044.98.5.858 | en |
| dc.references | Matsuda W, Furuta T, Nakamura KC, Hioki H, Fujiyama F, Arai R, Kaneko T. 2009. Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J Neurosci 29(2): 444–53. https://doi.org/10.1523/JNEUROSCI.4029-08.2009 | en |
| dc.references | Matzel LD, Sauce B. 2023. A multi-faceted role of dual-state dopamine signaling in working memory, attentional control, and intelligence. Front Behav Neurosci 17: 1060786. https://doi.org/10.3389/fnbeh.2023.1060786 | en |
| dc.references | Mitchell JM, Weinstein D, Vega T, Kayser AS. 2018. Dopamine, time perception, and future time perspective. Psychopharmacology (Berl) 235(10): 2783–93. https://doi.org/10.1007/s00213-018-4971-z | en |
| dc.references | Montgomery AJ, McTavish SF, Cowen PJ, Grasby PM. 2003. Reduction of brain dopamine concentration with dietary tyrosine plus phenylalanine depletion: an [11C] raclopride PET study. Am J Psychiatry 160(10): 1887–9. https://doi.org/10.1176/appi.ajp.160.10.1887 | en |
| dc.references | Mosites E, Aol G, Otiang E, Bigogo G, Munyua P, Montgomery JM, Neuhouser ML, Palmer GH, Thumbi SM. 2017. Child height gain is associated with consumption of animal-source foods in livestock-owning households in Western Kenya. Public Health Nutr 20(2): 336–45. https://doi.org/10.1017/S136898001600210X | en |
| dc.references | Newman EJ, Grosset DG, Kennedy PG. 2009. The parkinsonism-hyperpyrexia syndrome. Neurocrit Care 10(1): 136–40. https://doi.org/10.1007/s12028-008-9125-4. | en |
| dc.references | Nordströma U, Beauvais G, Ghosh A, Pulikkaparambil Sasidharan BC, Lundblad M, Fuchs J, Joshi RL, Lipton JW, Roholt A, Medicetty S, Feinstein TN, Steiner JA, Escobar Galvis ML, Prochiantz A, Brundin P. 2015. Progressive nigrostriatal terminal dysfunction and degeneration in the engrailed1 heterozygous mouse model of Parkinson’s disease. Neurobiol Dis 73: 70–82. https://doi.org/10.1016/j.nbd.2014.09.012 | en |
| dc.references | Nouri N, Awatramani R. 2017. A novel floor plate boundary defined by adjacent En1 and Dbx1 microdomains distinguishes midbrain dopamine and hypothalamic neurons. Development 144(5): 916–27. https://doi.org/10.1242/dev.144949 | en |
| dc.references | Olvera-Cortés ME, Anguiano-Rodríguez P, López-Vázquez MA, Alfaro JM. 2008. Serotonin/dopamine interaction in learning. Prog Brain Res 172: 567–602. https://doi.org/10.1016/S0079-6123(08)00927-8 | en |
| dc.references | Palmiero M, Fusi G, Crepaldi M, Borsa VM, Rusconi ML. 2022. Divergent thinking and the core executive functions: a state-of-the-art review. Cogn Process 23(3): 341–366. https://doi.org/10.1007/s10339-022-01091-4 | en |
| dc.references | Pietschnig J, Penke L, Wicherts JM, Zeiler M, Voracek M. 2015. Meta-analysis of associations between human brain volume and intelligence differences: how strong are they and what do they mean? Neurosci Biobehav Rev 57: 411–32. https://doi.org/10.1016/j.neubiorev.2015.09.017 | en |
| dc.references | Pobiner BL. 2020. The zooarchaeology and paleoecology of early hominin scavenging. Evol Anthropol 29(2): 68–82. https://doi.org/10.1002/evan.2182 | en |
| dc.references | Previc FH. 1991. A general theory concerning the prenatal origins of cerebral lateralization in humans. Psychol Rev 98(3): 299–334. https://doi.org/10.1037/0033-295x.98.3.299 | en |
| dc.references | Previc FH. 1999. Dopamine and the origins of human intelligence. Brain Cogn 41(3): 299–350. https://doi.org/10.1006/brcg.1999.1129 | en |
| dc.references | Previc FH. 2009. The Dopaminergic Mind in Human Evolution and History. New York: Cambridge University Press. | en |
| dc.references | Quinn G. 2012. Normal genetic variation of the human foot: part 1: the paradox of normal anatomical alignment in an evolutionary epigenetic context. J Am Podiatr Med Assoc 102(1): 64–70. https://doi.org/10.7547/1020064 | en |
| dc.references | Raghanti MA, Edler MK, Stephenson AR, Wilson LJ, Hopkins WD, Ely JJ, Erwin JM, Jacobs B, Hof PR, Sherwood CC. 2016. Human-specific increase of dopaminergic innervation in a striatal region associated with speech and language: a comparative analysis of the primate basal ganglia. J Comp Neurol 524(10): 2117–29. https://doi.org/10.1002/cne.23937 | en |
| dc.references | Raghanti MA, Edler MK, Stephenson AR, Munger EL, Jacobs B, Hof PR, Sherwood CC, Holloway RL, Lovejoy CO. 2018. A neurochemical hypothesis for the origin of hominids. Proc Natl Acad Sci USA 115(6): E1108-E1116. https://doi.org/10.1073/pnas.1719666115 | en |
| dc.references | Raghanti MA, Spocter MA, Stimpson CD, Erwin JM, Bonar CJ, Allman JM, Hof PR, Sherwood CC. 2009. Species-specific distributions of tyrosine hydroxylase-immunoreactive neurons in the prefrontal cortex of anthropoid primates. Neuroscience 158(4): 1551–9. https://doi.org/10.1016/j.neuroscience.2008.10.058 | en |
| dc.references | Ranganath A, Jacob SN. 2016. Doping the mind: dopaminergic modulation of prefrontal cortical cognition. Neuroscientist 22(6): 593–603. https://doi.org/10.1177/1073858415602850 | en |
| dc.references | Rusz J, Dusek P, Tykalova T, Novotny M, Illner V, Simek M, Kouba T, Kryze P, Zogala D, Ruzicka E, Sousa M, Jorge A, Nef T, Krack P. 2024. Is speech function lateralised in the basal ganglia? Evidence from de novo Parkinson’s disease. J Neurol Neurosurg Psychiatry jnnp-2024-334297. https://doi.org/10.1136/jnnp-2024-334297 | en |
| dc.references | Ruxton GD, Wilkinson DM. 2011. Avoidance of overheating and selection for both hair loss and bipedality in hominins. Proc Natl Acad Sci USA 108(52): 20965–9. https://doi.org/10.1073/pnas.1113915108 | en |
| dc.references | Saniotis A, Grantham JP, Kumaratilake JS, Henneberg M, Mohammadi K. 2021. Going beyond brain size: An evolutionary overview of serotonergic regulation in human higher cortical functions. Anthropologie 59(1): 101–6. https://doi.org/10.26720/anthro.20.08.1 | en |
| dc.references | Scott IM, Boulant JA. 1984. Dopamine effects on thermosensitive neurons in hypothalamic tissue slices. Brain Res 306(1–2): 157–163. https://doi.org/10.1016/0006-8993(84)90364-0 | en |
| dc.references | Shibasaki M, Crandall CG. 2010. Mechanisms and controllers of eccrine sweating in humans. Front Biosci (Schol Ed) 2(2): 685–96. https://doi.org/10.2741/s94 | en |
| dc.references | Simon HH, Thuret S, Alberi L. 2004. Midbrain dopaminergic neurons: control of their cell fate by the engrailed transcription factors. Cell Tissue Res 318(1): 53–61. https://doi.org/10.1007/s00441-004-0973-8 | en |
| dc.references | Simonyan K, Herscovitch P, Horwitz B. 2013. Speech-induced striatal dopamine release is left lateralized and coupled to functional striatal circuits in healthy humans: a combined PET, fMRI and DTI study. Neuroimage 70: 21–32. https://doi.org/10.1016/j.neuroimage.2012.12.042 | en |
| dc.references | Smith JW, Bello ML, Price FG. 2021. A case-series observation of sweat rate variability in endurance-trained athletes. Nutrients 13(6): 1807. https://doi.org/10.3390/nu13061807 | en |
| dc.references | Sniekers S, Stringer S, Watanabe K, Jansen PR, Coleman JRI, Krapohl E, Taskesen E, Hammerschlag AR, Okbay A, Zabaneh D, Amin N, Breen G, Cesarini D, Chabris CF, Iacono WG, Ikram MA, Johannesson M, Koellinger P, Lee JJ, Magnusson PKE, McGue M, Miller MB, Ollier WER, Payton A, Pendleton N, Plomin R, Rietveld CA, Tiemeier H, van Duijn CM, Posthuma D. 2017. Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence. Nat Genet 49(10): 1558. https://doi.org/10.1038/ng1017-1558c. Erratum for: Nat Genet. 2017 49(7): 1107–1112. https://doi.org/10.1038/ng.3869 | en |
| dc.references | Sousa AMM, Zhu Y, Raghanti MA, Kitchen RR, Onorati M, Tebbenkamp ATN, Stutz B, Meyer KA, Li M, Kawasawa YI, Liu F, Perez RG, Mele M, Carvalho T, Skarica M, Gulden FO, Pletikos M, Shibata A, Stephenson AR, Edler MK, Ely JJ, Elsworth JD, Horvath TL, Hof PR, Hyde TM, Kleinman JE, Weinberger DR, Reimers M, Lifton RP, Mane SM, Noonan JP, State MW, Lein ES, Knowles JA, Marques-Bonet T, Sherwood CC, Gerstein MB, Sestan N. 2017. Molecular and cellular reorganization of neural circuits in the human lineage. Science 358(6366): 1027–32. https://doi.org/10.1126/science.aan3456 | en |
| dc.references | Stanley SM. 1995. Climatic forcing and the origin of the human genus. W: National Research Council (US) Panel on Effects of Past Global Change on Life. Washington, DC: National Academies Press, 233–43. | en |
| dc.references | Suzuki T. 1981. How great will the stature of Japanese eventually become? J Hum Ergol (Tokyo) 10(1): 13–24. | en |
| dc.references | Takeuchi H, Taki Y, Sekiguchi A, Nouchi R, Kotozaki Y, Nakagawa S, Miyauchi CM, Iizuka K, Yokoyama R, Shinada T, Yamamoto Y, Hanawa S, Araki T, Hashizume H. 2014. Creativity measured by divergent thinking is associated with two axes of autistic characteristics. Front Psychol 5: 921. https://doi.org/10.3389/fpsyg.2014.00921 | en |
| dc.references | Taki Y, Hashizume H, Sassa Y, Takeuchi H, Asano M, Asano K, Kotozaki Y, Nouchi R, Wu K, Fukuda H, Kawashima R. 2012. Correlation among body height, intelligence, and brain gray matter volume in healthy children. Neuroimage 59(2): 1023–7. https://doi.org/10.1016/j.neuroimage.2011.08.092 | en |
| dc.references | Tam CS, Johnson WD, Rood J, Heaton AL, Greenway FL. 2020. Increased human growth hormone after oral consumption of an amino acid supplement: results of a randomized, placebo-controlled, double-blind, crossover study in healthy subjects. Am J Ther. 27(4): e333–e337. https://doi.org/10.1097/MJT.0000000000000893 | en |
| dc.references | Taylor KM, Giersch GEW, Caldwell AR, Epstein Y, Charkoudian N. 2024. Relation of body surface area-to-mass ratio to risk of exertional heat stroke in healthy men and women. J Appl Physiol (1985). 136(3): 549–54. https://doi.org/10.1152/japplphysiol.00597.2023 | en |
| dc.references | Tilkens MJ, Wall-Scheffler C, Weaver TD, Steudel-Numbers K. 2007. The effects of body proportions on thermoregulation: an experimental assessment of Allen’s rule. J Hum Evol 53(3): 286–91. https://doi.org/10.1016/j.jhevol.2007.04.005 | en |
| dc.references | Tong J, Hornykiewicz O, Kish SJ. 2006. Inverse relationship between brain noradrenaline level and dopamine loss in Parkinson disease: a possible neuroprotective role for noradrenaline. Arch Neurol 63(12): 1724-8. https://doi.org/10.1001/archneur.63.12.1724 | en |
| dc.references | Tormoehlen LM, Rusyniak DE. 2018. Neuroleptic malignant syndrome and serotonin syndrome. Handb Clin Neurol 157: 663–75. https://doi.org/10.1016/B978-0-444-64074-1.00039-2 | en |
| dc.references | Toups MA, Kitchen A, Light JE, Reed DL. 2011. Origin of clothing lice indicates early clothing use by anatomically modern humans in Africa. Mol Biol Evol 28(1): 29–32. https://doi.org/10.1093/molbev/msq234 | en |
| dc.references | Tyler J, Podaras M, Richardson B, Roeder N, Hammond N, Hamilton J, Blum K, Gold M, Baron DA, Thanos PK. 2023. High intensity interval training exercise increases dopamine D2 levels and modulates brain dopamine signaling. Front Public Health 11: 1257629. https://doi.org/10.3389/fpubh.2023.1257629 | en |
| dc.references | Wang L, Yin H, Di Y, Liu Y, Liu J. 2016. Human local and total heat losses in different temperature. Physiol Behav 157: 270–6. https://doi.org/10.1016/j.physbeh.2016.02.018 | en |
| dc.references | Weydt P, Dupuis L, Petersen Å. 2018. Thermoregulatory disorders in Huntington disease. Handb Clin Neurol 157: 761–75. https://doi.org/10.1016/B978-0-444-64074-1.00047-1 | en |
| dc.references | Wheeler PE. 1985. The loss of functional body hair in man: the influence of thermal environment, body form and bipedality. J Hum Evol 14: 23–8. https://doi.org/10.1016/S0047-2484(85)80091-9 | en |
| dc.references | Will M, Pablos A, Stock JT. 2017. Long-term patterns of body mass and stature evolution within the hominin lineage. R Soc Open Sci 4(11): 171339. https://doi.org/10.1098/rsos.171339 | en |
| dc.references | Yuan T, Ying J, Jin L, Li C, Gui S, Li Z, Wang R, Zuo Z, Zhang Y. 2020. The role of serum growth hormone and insulin-like growth factor-1 in adult humans brain morphology. Aging (Albany NY). 12(2): 1377–96. https://doi.org/10.18632/aging.102688. Erratum in: Aging (Albany NY). 2021 Sep 29;13(18): 22623–22624. https://doi.org/10.18632/aging.203601 | en |
| dc.references | Zabelina DL, Colzato L, Beeman M, Hommel B. 2016. Dopamine and the creative mind: individual differences in creativity are predicted by interactions between dopamine genes DAT and COMT. PLoS One 11(1): e0146768. https://doi.org/10.1371/journal.pone.0146768 | en |
| dc.references | Zheng X, Hasegawa H. 2016. Central dopaminergic neurotransmission plays an important role in thermoregulation and performance during endurance exercise. Eur J Sport Sci 16(7): 818–28. https://doi.org/10.1080/17461391.2015.1111938 | en |
| dc.references | Zink KD, Lieberman DE. 2016. Impact of meat and Lower Palaeolithic food processing techniques on chewing in humans. Nature 531(7595): 500–3. https://doi.org/10.1038/nature16990 | en |
| dc.contributor.authorEmail | fprevic@gmail.com | |
| dc.identifier.doi | 10.18778/1898-6773.88.4.02 | |
| dc.relation.volume | 88 | |