Pokaż uproszczony rekord

dc.contributor.authorTurło, Jadwigaen
dc.date.accessioned2015-06-17T08:36:45Z
dc.date.available2015-06-17T08:36:45Z
dc.date.issued2014-11-25en
dc.identifier.issn1730-2366en
dc.identifier.urihttp://hdl.handle.net/11089/9905
dc.description.abstractThis review article concisely describes methodology of biotechnological processes with the use of cultures of higher fungi, their application in bioremediation and to obtain biologically active preparations. Advantages and disadvantages of biotechnological methods used to cultivate mushrooms are analyzed. This paper contains overview of higher fungi species most commonly used in biotechnological processes, of cultivation methods applied to produce fungal biomass, of enzymes and bioactive metabolites and of the strategies for submerged cultivation of the mycelial cultures. The problems of optimization of strains and biotechnological processes are briefly discussed.en
dc.description.abstractNiemniej pomimo trudności, producenci substancji leczniczych pochodzenia grzybowego (Lentinan, LEM, Grifon-D, PSK, PSP), suplementów diety oraz enzymów grzybowych, wprowadzają metody biotechnologiczne do produkcji. Zgodnie ze stosowanym od dawna w biotechnologii przemysłowej (np. przez producentów antybiotyków) zwyczajem, warunki procesu rzadko są opisywane w publikacjach, a czasami nie są nawet patentowane - co ułatwia zachowanie ich w tajemnicy. W latach 90-tych XX wieku pojawiły się pierwsze informacje o możliwości stosowania metod rekombinowanego DNA dla grzybów wyższych. Współcześnie, liczne publikacje donoszą o opracowaniu metod transformacji oraz o uzyskaniu modyfikowanych genetycznie grzybów jadalnychen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegoen
dc.relation.ispartofseriesFolia Biologica et Oecologica;10en
dc.rightsThis work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.en
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/en
dc.subjectmedicinal mushroomsen
dc.subjectmycoremediationen
dc.subjectsubmerged cultivationen
dc.subjectprocess optimizationen
dc.titleThe biotechnology of higher fungi - current state and perspectivesen
dc.page.number49-65en
dc.contributor.authorAffiliationDepartment of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Polanden
dc.referencesArora, S., Goyal, S., Balani, J. & Tandon, S. 2013. Enhanced antiproliferative effects of aqueous extracts of some medicinal mushrooms on colon cancer cells. International Journal of Medicinal Mushrooms, 15 (3): 301-14.23662617 doi: 10.1615/IntJMedMushr.v15.i3.70en
dc.referencesAsatiani, M.D., Elisashvili, V., Wasser, S.P., Reznick, A.Z. & Nevo, E. 2007. Antioxidant activity of submerged cultured mycelium extracts of higher Basidiomycetes mushrooms. International Journal of Medicinal Mushrooms, 9: 151-58. doi: 10.1615/IntJMedMushr.v9.i2.50en
dc.referencesAtli, B., Yamac, M. & Yildiz, Z. 2013. Optimization of submerged fermentation conditions for lovastatin production by the culinary-medicinal oyster mushroom, Pleurotus ostreatus (Higher Basidiomycetes).24266373en
dc.referencesInternational Journal of Medicinal Mushrooms, 15(5): 487-95.24266373en
dc.referencesAu, C.H., Cheung, M.K., Wong, M.C., Chu A., Law, T.W. & Kwan, S. 2013. Rapid genotyping by low-coverage resequencing to construct genetic linkage maps of fungi: a case study in Lentinula edodes. BMC Research Notes, 6: 307.23915543 doi: 10.1186/1756-0500-6-307en
dc.referencesAust, D. & Benson, J. 1993. The fungus among Us: Use of white rot fungi to biodegrade environmental pollutants. Environmental Health Perspectives, 101: 1-3.en
dc.referencesBarr, D.P. & Aust S.D. 1994. Mechanisms whiterot fungi use to degrade pollutants. Environmental Science and Technology, 28: 78A-87A. doi: 10.1021/es00051a724en
dc.referencesBeaudette, L.A., Ward, O.P., Pickard, M.A. & Fedorak, P.M. 2000. Low surfactant concentration increases fungal mineralization of a polychlorinated biphenyl congener but has no effect on overall metabolism. Letters in Applied Microbiology, 30: 155-160.10736020 doi: 10.1046/j.1472-765x.2000.00700.xen
dc.referencesBending, G.D., Friloux, M., Walker, A. 2002. Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic potential. FEMS Microbiology Letters, 212: 59-63.12076788 doi: 10.1111/j.1574-6968.2002.tb11245.xen
dc.referencesBerry D.F., Tomkinson R.A., Hetzel G.H., Mullins D.E., Young R.W. 1993. Evaluation of solidstate fermentation techniques to dispose of atrazine and carbofuran. Journal of Environmental Quality, 22: 366-374. doi: 10.2134/jeq1993.00472425002200020018xen
dc.referencesBucke, C. 1998. Biochemistry of bioremediation of fungi. Journal of Chemical Technology and Biotechnology, 71:356-357. doi: 10.1002/(SICI)1097-4660(199804)71:4<356::AID-JCTB838>3.0.CO;2-Een
dc.referencesBumpus J.A., Tien M., Wright D., Aust S.D. 1985. Oxidation of persistent environmental pollutants by a white rot fungus. Science, 228: 1434-1436.3925550 doi: 10.1126/science.3925550en
dc.referencesChang, M., Tsai, G. & Houng J. 2006. Optimization of the medium composition for the submerged culture of Ganoderma lucidum by Taguchi array design and steepest ascent method.en
dc.referencesEnzyme and Microbial Technology, 38: 407-14.en
dc.referencesChang, S.T. & Buswell J.A. 1999. Ganoderma lucidum (Curt.: Fr.), P. Karst (Aphyllophoromycetideae) − A mushrooming medicinal mushroom. International Journal of Medicinal Mushrooms, 1: 139-146.en
dc.referencesCheng, Y.W., Chen, Y.I., Tzeng, C.Y., Chang, C.H., Lee, Y.C., Chen, H.C., Tsai, C.C., Hsu, T.H., Lai, Y.K. & Chang, S.L. 2013. Aqueous extracts of Cordyceps militaris (Ascomycetes) lower the levels of plasma glucose by activating the cholinergic nerve in streptozotocin-induced diabetic rats. International Journal of Medicinal Mushrooms, 15 (3): 277-86.23662615 doi: 10.1615/IntJMedMushr.v15.i3.50en
dc.referencesCho, J.H., Lee, S.E., Chang, W.B. & Cha, J.S. 2006. Agrobacterium-mediated transformation of the winter mushroom, Flammulina velutipes.24039479en
dc.referencesMycobiology, 34(2): 104-107.en
dc.referencesCloete, T.E. & Celliers L. 1999. Removal of Aroclor 1254 by the white rot fungus Coriolus versicolor in the presence of different concentrations of Mn(IV) oxide. International Biodeterioration and Biodegradation, 44: 243-253. doi: 10.1016/S0964-8305(99)00085-2en
dc.referencesCouto, S.R., Feijoo, G., Moreira, M.T. & Lema, J.M. 2002. Evaluation of the environmental conditions for the continuous production of lignin peroxidase by Phanerochaete chrysosporium in fixed-bed bioreactors. Biotechnology Letters, 24:791-794. doi: 10.1023/A:1015576121541en
dc.referencesCouto, S.R. & Toca-Herrera, J.L. 2007. Laccase production at reactor scale by filamentous fungi. Biotechnology Advances, 25: 558-69.17706395 doi: 10.1016/j.biotechadv.2007.07.002en
dc.referencesCroccia, C., Lopes, A.J., Pinto, L.F.R., Sabaa-Srur, A.U.O., Vaz, L.C., Trotte, M.N., Tessarollo, B., Silva, A.C., de Matos, H.J. & Nunes, R.A. 2013. Royal sun medicinal mushroom Agaricus brasiliensis (higher Basidiomycetes) and the attenuation of pulmonary inflammation induced by 4-(methylnitrosamino)-1-(3- pyridyl)-1-butanone (NNK). International Journal of Medicinal Mushrooms, 15 (4): 345-55.en
dc.referencesCui, F.J., Li, Y., Xu, Z.H., Xu, H.Y., Sun, K. & Tao, W.Y. 2006. Optimization of the medium composition for production of mycelial biomass and exo-polymer by Grifola frondosa GF9801 using response surface methodology. Bioresource. Technology, 97: 1209-16.en
dc.referencesDurgo, K., Koncar, M., Komes, D., Belscak- Cvitanovic, A., Franekic, J., Jakopovich, I., Jakopovich, N. & Jakopovich, B. 2013.en
dc.referencesCytotoxicity of blended versus single medicinal mushroom extracts on human cancer cell lines: contribution of polyphenol and polysaccharide content. International Journal of Medicinal Mushrooms, 15 (5): 435-48.24266369en
dc.referencesElisashvili, V. 2012. Submerged cultivation of medicinal mushrooms: bioprocesses and products (Review). International Journal of Medicinal Mushrooms, 14: 211-239. doi: 10.1615/IntJMedMushr.v14.i3.10en
dc.referencesElisashvili, V., Kachlishvili, E., Wasser, S. 2009. Carbon and nitrogen source effects on Basidiomycetes exopolysaccharide production. Applied Biochemistry Microbiology, 45: 531-535. doi: 10.1134/S0003683809050135en
dc.referencesFeng, Y.L., Li, W.Q., Wu, X.Q., Cheng, J.W. & Ma, S.Y. 2010. Statistical optimization of media for mycelial growth and exo-polysaccharide production by Lentinus edodes and a kinetic model study of two growth morphologies. Biochemical Engineering Journal, 49: 104-112. doi: 10.1016/j.bej.2009.12.002en
dc.referencesField, J.A., de Jong, E., Feijoo Costa, G. & de Bont, J.A.M. 1992. Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi. Applied Environmental Microbiology, 58: 2219 2226.en
dc.referencesFlorack, D.E.A. & Rouwendal G.J.A. 2007. Immunization with transgenic mushrooms, WO 2007111500 A1.en
dc.referencesGarcía, M.G., Zavaleta, L.R., Cruz, N.A.V. & Roldán, M.A.T. 2014. Conservation of the mycelia of the medicinal mushroom Humphreya coffeata (Berk.) Stey. in sterile distilled water. Methods X, 1: 19-22.en
dc.referencesGregory, F.J. 1996. Studies on antitumor substances produced by basidiomycetes. Mycologia, 58: 80-91.en
dc.referencesHabijanic, J., Berovic, M., Boh, B., Wraber, B. & Petravic-Tominac, V. 2013. Production of biomass and polysaccharides of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W. Curt. : Fr.) P. Karst. (higher Basidiomycetes), by submerged cultivation. International Journal of Medicinal Mushrooms, 15(1): 81-90.23510287 doi: 10.1615/IntJMedMushr.v15.i1.90en
dc.referencesHammel, K.E. & Cullen, D. 2008. Role of fungal peroxidases in biological ligninolysis. Current Opinion in Plant Biology, 11: 349-355.18359268 doi: 10.1016/j.pbi.2008.02.003en
dc.referencesHomolka L. 2014. Preservation of live cultures of Basidiomycetes - recent methods. Fungal Biology, 118: 107-125.24528635 doi: 10.1016/j.funbio.2013.12.002en
dc.referencesHsu, T.H., Lee, C.H., Lin, F.Y., Wasser, S.P. & Lo, H.C. 2014. The fruiting bodies, submerged culture biomass, and acidic polysaccharide glucuronoxylomannan of yellow brain mushroom Tremella mesenterica modulate the immunity of peripheral blood leukocytes and splenocytes in rats with impaired glucose tolerance. Journal of Traditional and Complementary Medicine, 4(1): 56-63.en
dc.referencesHuizing, H.J., Mooibroek, A., Rats, F.H. & Van De Rhee, M.D. 1995. Production and application of transgenic mushroom mycelium and fruitbodies, WO 1995002691 A3en
dc.referencesIrie, T., Honda, Y., Watanabe, T. & Kuwahara, M. 2001. Homologous expression of recombinant manganese peroxidase genes in ligninolytic fungus Pleurotus ostreatus. Applied Microbiology and Biotechnology, 55: 566-570.11414322 doi: 10.1007/s002530000540en
dc.referencesJeong, S.C., Koyyalamudi, S.R., Hughes, J., Khoo, C., Bailey, T., Marripudi, K., Park, J.P., Kim, J.H. & Song, C.H. 2013. Antioxidant and immunomodulating activities of exo-and endopolysaccharide fractions from submerged mycelia cultures of culinary-medicinal mushrooms. International Journal of Medicinal Mushrooms, 15(3): 251-66.23662613 doi: 10.1615/IntJMedMushr.v15.i3.30en
dc.referencesKamei, I. & Kondo, R. 2005. Biotransformation of dichloro-, trichloro-, andtetrachlorodibenzo-pdioxin by the white-rot fungus Phlebia lindtneri. Applied Microbiology and Biotechnology, 68: 560-566. doi: 10.1007/s00253-005-1947-9en
dc.referencesKhan, M.A., Tania, M., Liu, R. & Rahman, M.M. 2013. Hericium erinaceus: an edible mushroom with medicinal values. Journal of Complementary and Integrative Medicine, 10 (1): 253-258.en
dc.referencesKim, S.S., Lee, J.S., Cho, J.Y., Kim, Y.E. & Hong, E.K. 2010. Process development for mycelial growth and polysaccharide production in Tricholoma matsutake liquid culture. Journal of Bioscience and Bioengineering, 109: 351-55.20226376 doi: 10.1016/j.jbiosc.2009.10.010en
dc.referencesKim, S.W., Hwang, H.J., Lee, B.C. & Yun, J.W. 2007. Submerged production and characterization of Grifola frondosa polysaccharides - a new application to cosmeceuticals. Food Technology and Biotechnology, 45: 295-305.en
dc.referencesKim, S.W., Hwang, H.J., Park, J.P., Cho, Y.J., Song, C.H. & Yun, J.W. 2002. Mycelial growth and exo-biopolymer production by submerged culture of various edible mushrooms under different media. Letters in Applied Microbiology, 34: 56-61.11849494 doi: 10.1046/j.1472-765x.2002.01041.xen
dc.referencesKirk, P.M., Cannon, P.F., Minter, D.W. & Stalpers, J.A. 2008. Dictionary of the Fungi. 10th ed. Wallingford, UK: CAB International.en
dc.referencesKoller, G., Moder, M. & Czihal, K. 2000.en
dc.referencesPeroxidation degradation of selected PCB: a mechanistic study. Chemosphere, 41: 1827-1834.en
dc.referencesKubatova, A., Matucha, M., Erbanova, P., Novotny, C., Vlasakova, V. & Sasek, V. 1998 Investigation into PCB degradation using uniformly 14C-labeled dichlorobiphenyl. Isotopes in Environmental and Health Studies, 34: 325-334.en
dc.referencesKwan, H.S., Au, C.H., Wong, M.C., Qin, J., Kwok, I.S.W., Chum, W.W.Y., Yip, P.Y., Wong, K.S., Li, L., Huang, Q. & Nong, W. 2012. Genome sequence and genetic linkage analysis of Shiitake mushroom Lentinula edodes. Nature Precedings . http://dx.doi.org/ doi: 10.1038/npre.2012.6855.1en
dc.referencesKylyc, A. & Yesilada, E. 2013. Preliminary results on antigenotoxic effects of dried mycelia of two medicinal mushrooms in Drosophila melanogaster somatic mutation and recombination test. International Journal of Medicinal Mushrooms, 15 (4): 415-21.23796223 doi: 10.1615/IntJMedMushr.v15.i4.90en
dc.referencesLee, B.C., Bae, J.T., Pyo, H.B., Choe, T.B., Kim, S.W., Hwang, H.J. & Yun, J.W. 2004. Submerged culture conditions for the production of mycelial biomass and exopolysaccharides by the edible Basidiomycete Grifola frondosa. Enzyme and Microbial Technology, 35: 369-76. doi: 10.1016/j.enzmictec.2003.12.015en
dc.referencesLei, H., Zhang, M., Wang, Q., Guo, S., Han, J., Sun, H. & Wu, W. 2013. MT-α-glucan from the fruit body of the maitake medicinal mushroom Grifola frondosa (higher Basidiomyetes) shows protective effects for hypoglycemic pancreatic β-cells. International Journal of Medicinal Mushrooms, 15 (4): 373-81.23796219 doi: 10.1615/IntJMedMushr.v15.i4.50en
dc.referencesLevin, L., Viale, A., Forchiassin, A. 2003. Degradation of organic pollutants by the white rot basidiomycete Trametes trogii. International Biodeterioration and Biodegradation, 52: 1-5. doi: 10.1016/S0964-8305(02)00091-4en
dc.referencesLiang, C.H., Ho, K.J., Huang, L.Y., Tsai, C.H., Lin, S.Y. & Mau, J.L. 2013. Antioxidant properties of fruiting bodies, mycelia, and fermented products of the culinary-medicinal king oyster mushroom, Pleurotus eryngii (higher Basidiomycetes), with high ergothioneine content. International Journal of Medicinal Mushrooms, 15 (3): 267-75. 23662614 doi: 10.1615/IntJMedMushr.v15.i3.40en
dc.referencesLin, E.S. 2010. Submerged culture medium composition for the antioxidant activity by Grifola frondosa TFRI1073. Food Science and Biotechnology, 19: 917-22.en
dc.referencesLin, J., Zheng, M., Wang, J., Shu, W. & Guo, L. 2008. Efficient transformation and expression of gfp gene in the edible mushroom Pleurotus nebrodensis. Progress in Natural Science 18: 819-824. doi: 10.1016/j.pnsc.2008.01.015en
dc.referencesLin, S.Y., Chen, Y.K., Yu, H.T., Barseghyan, G.S., Asatiani, M.D., Wasser, S.P. & Mau J.L. 2013. Comparative study of contents of several bioactive components in fruiting bodies and mycelia of culinary-medicinal mushrooms. International Journal of Medicinal Mushrooms, 15 (3): 315-23.23662618 doi: 10.1615/IntJMedMushr.v15.i3.80en
dc.referencesLindequist, U., Niedermeyer, T.H.J. & Jülich, W.D. 2005. The pharmacological potential of mushrooms. Evidence-Based Complementary and Alternative Medicine, 2(3): 285-299.en
dc.referencesLiu, G.Q. & Wang, X.L. 2007. Optimization of critical medium components using response surface methodology for biomass and extracellular polysaccharide production by Agaricus blazei. Applied Microbiology and Biotechnology, 74: 78-83.17086412 doi: 10.1007/s00253-006-0661-6en
dc.referencesLo, Y.C., Lin, S.Y., Ulziijargal, E., Chen, S.Y., Chien, R.C., Tzou, Y.J. & Mau, J.L. 2012. Comparative study of contents of several bioactive components in fruiting bodies and mycelia of culinary-medicinal mushrooms. International Journal of Medicinal Mushrooms, 14(4): 357-63.23510173 doi: 10.1615/IntJMedMushr.v14.i4.30en
dc.referencesLuo, J., Liu, J, Ke, C., Qiao, D., Ye, H., Sun, Y. & Zeng, X. 2009. Optimization of medium composition for the production of exopolysaccharides from Phellinus baumii Pilát in submerged culture and the immuno-stimulating activity of exopolysaccharides. Carbohydrate Polymers, 78: 409-415. doi: 10.1016/j.carbpol.2009.04.038en
dc.referencesMalinowska, E., Krzyczkowski, W., Herold, F., Łapienis, G., Ślusarczyk, J., Suchocki, P., Kuraś, M. & Turło, J. 2009a. Biosynthesis of selenium-containing polysaccharides with antioxidant activity in liquid culture of Hericium erinaceum. Enzyme and Microbial Technology, 44: 334-43. doi: 10.1016/j.enzmictec.2008.12.003en
dc.referencesMalinowska, E., Krzyczkowski, W., Łapienis, G. & Herold, F. 2009b. Improved simultaneous production of mycelial biomass and polysaccharides by submerged culture of Hericium erinaceum: optimization using a central composite rotatable design (CCRD). Journal of Industrial Microbiology Biotechnology, 36: 1513-27. doi: 10.1007/s10295-009-0640-xen
dc.referencesMasaphy, S., Henis, Y. & Levanon, D. 1996. Manganese-enhanced biotransformation of atrazine by the white rot fungus Pleurotus pulmonarius and its correlation with oxidation activity. Applied Environmental Microbiology, 62: 3587-3593.en
dc.referencesMendez-Espinoza, C., Garcia-Nieto, E., Esquivel, A.M., Gonzalez, M.M., Bautista, E.V., Ezquerro, C.C. & Santacruz, L.J. 2013. Antigenotoxic potential of aqueous extracts from the chanterelle mushroom, Cantharellus cibarius (higher Basidiomycetes), on human mononuclear cell cultures. International Journal of Medicinal Mushrooms, 15 (3): 325-32. doi: 10.1615/IntJMedMushr.v15.i3.90en
dc.referencesMester, T., Swarts, H.J., Sole, S., de Bont, J.A. & Field, J.A. 1997. Stimulation of aryl metabolite production in the basidiomycete Bjerkandera sp. strain BOS55 with biosynthetic precursors and lignin degradation products. Applied and Environmental Microbiology, 63:1987-1994.en
dc.referencesMikosch, T.S.P., Lavrijssen, B., Sonnenberg, A.S.M. & van Griensven, L.J.L.D. 2001. Transformation of the cultivated mushroom Agaricus bisporus (Lange) using T-DNA from Agrobacterium tumefaciens. Current Genetics, 39: 35-39. doi: 10.1007/s002940000178en
dc.referencesMizuno, M. & Nishitani, Y. 2013. Macrophage activation-mediated hydrogen peroxide generation by the royal sun medicinal mushroom Agaricus brasiliensis (higher Basidiomycetes). International Journal of Medicinal Mushrooms, 15 (4): 365-71.23796218 doi: 10.1615/IntJMedMushr.v15.i4.40en
dc.referencesMizuno, T. 1999. The extraction and development of antitumor-active polysaccharides from medicinal mushrooms in Japan. International Journal of Medicinal Mushrooms, 1: 9-29. doi: 10.1615/IntJMedMushrooms.v1.i1.20en
dc.referencesMoreira, M.T., Feijoo, G. & Lema, J.M. 2000. Manganese peroxidase production by Bjerkandera sp. BOS55. 1. Regulation of enzymatic production. Bioprocess and Biosystems Engineering, 23: 657-661.en
dc.referencesNovotny, C., Vyas, B.R.M., Erbanova, P., Kubatova, A. & Sasek, V. 1997. Removal of PCBs by various white rot fungi in liquid cultures. Folia Microbiologica, 42: 136-140.9340310 doi: 10.1007/BF02898723en
dc.referencesOrihara, K., Yamazaki, T., Shinkyo, T., Sakaki, T., Inouye, K., Tsukamoto, A., Sugiura, J. & Shishido, K. 2005. Rat cytochrome P450- mediated transformation of dichlorodibenzo-pdioxins by recombinant white-rot basidiomycete Coriolus hirsutus. Applied Microbiology and Biotechnology, 69: 22-28. doi: 10.1007/s00253-005-1943-0en
dc.referencesPandey, A., Soccol, C.R. & Mitchell, D. 2000. New developments in solid state fermentation. I. Processes and products. Process Biochemistry, 35: 1153-69. doi: 10.1016/S0032-9592(00)00152-7en
dc.referencesPark, J.P., Kim, S.W., Hwang, H.J., Cho, Y.J. & Yun, J.W. 2002. Stimulatory effect of plant oils and fatty acids on the exo-biopolymer production in Cordyceps militaris. Enzyme and Microbial Technology, 31: 250-55. doi: 10.1016/S0141-0229(02)00099-6en
dc.referencesPatel, S. & Goyal, A. 2012. Recent developments in mushrooms as anti-cancer therapeutics: a review. 3 Biotech, 2 :1-15.en
dc.referencesPetre, M. & Teodorescu, A. 2012. Biotechnology of agricultural wastes recycling through controlled cultivation of mushrooms. In: Petre M. (ed.), Advances in Applied Biotechnology, Under CC BY 3.0 license, pp. 3-22.en
dc.referencesPetre, M., Teodorescu, A., Tuluca, E., Bejan, C. & Andronesc, A. 2010. Biotechnology of mushroom pellets producing by controlled submerged fermentation. Romanian Biotechnological Letters, 15: 5055.en
dc.referencesPorras-Arboleda, S.M., Valdez-Cruz, N.A., Rojano, B., Aguilar, C., Rocha-Zavaleta, L. & Trujillo- Roldán, M.A. 2009. Mycelial submerged culture of new medicinal mushroom, Humphreya coffeata (Berk.) Stey. (Aphyllophoromycetideae) for the production of valuable bioactive metabolites with cytotoxicity, genotoxicity, and antioxidant activity. International Journal of Medicinal Mushrooms, 11: 335-50. Romaine, C.P. 2011. Adventures with Transgenic Mushrooms: developing a gene transfer method for the mushroom. The Free Library. Retrieved July 2014 from http://www.thefreelibrary.com/Adventures+wit h+Transgenic+Mushrooms%3a+developing+a +gene+transfer...-a0273280975en
dc.referencesRony, K.A., Ajith, T.A., Mathew, J. & Janardhanan, K.K. 2013. The medicinal cracked-cap polypore mushroom Phellinus rimosus (higher Basidiomycetes) attenuates alloxan-induced hyperglycemia and oxidative stress in rats. International Journal of Medicinal Mushrooms, 15 (3): 287-300.23662616 doi: 10.1615/IntJMedMushr.v15.i3.60en
dc.referencesRouhana-Toubi, A., Wasser, S.P., Agbarya, A. & Fares, F. 2013. Inhibitory effect of ethyl acetate extract of the shaggy inc cap medicinal mushroom, Coprinus comatus (Higher Basidiomycetes) fruit bodies on cell growth of human ovarian cancer. International Journal of Medicinal Mushrooms, 15 (5): 457-70. doi: 10.1615/IntJMedMushr.v15.i5.40en
dc.referencesRuiz-Aguilar, G.M.L., Fernandez-Sanchez, J.M., Rodriguez-Vazquez, R. & Poggi-Veraldo, H. 2002. Degradation by white rot fungi of high concentrations of PCB extracted from a contaminated soil. Advances in Environmental Research, 6: 559-568. doi: 10.1016/S1093-0191(01)00102-2en
dc.referencesSasek, V., Volfova, O., Erbanova, P., Vyas, B.R.M. & Matucha, M. 1993. Degradation of PCBs by white rot fungi, methylotrophic and hydrocarbon utilizing yeasts and bacteria. Biotechnology Letters, 15: 521-526. doi: 10.1007/BF00129330en
dc.referencesShih, I.L., Chou, B.W., Chen, C.C., Wu, J.Y. & Hsieh, C. 2008. Study of mycelial growth and bioactive polysaccharide production in batch and fed-batch culture of Grifola frondosa.17363244en
dc.referencesBioresource Technology, 99: 785-793.17363244en
dc.referencesShukla, G. & Varma, A. 2011. Soil Enzymology, Soil Biology 22. Springer-Verlag, Berlin, Heidelberg.en
dc.referencesSingh, H. 2006. Fungal metabolism of polycyclic aromatic hydrocarbons. In: Singh H. (ed.), Mycoremediation. Fungal Bioremediation.en
dc.referencesJohn Wiley & Sons, Hoboken, New Jersey, pp. 283-356.en
dc.referencesSumiyoshi, Y., Hashine, K. & Kakehi, Y. 2010. Dietary administration of mushroom Mycelium extracts in patients with early stage prostate cancers managed expectantly: A phase II study. Japanese Journal of Clinical Oncology, 40(10): 967-972.20522448 doi: 10.1093/jjco/hyq081en
dc.referencesSummerbell, R., Castle, R.A., Horgen, J. & Anderson, J. B., 1989. Inheritance of restriction length polymorphisms in Agaricus brunnescens. Genetics, 123:293-300.en
dc.referencesTakada, S., Nakamura, M., Matsueda, T., Kondo, R. & Sakai K. 1996. Degradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans by the white rot fungus Phanerochaete sordida YK-624. Applied Environmental Microbiology, 62: 4323-4328.en
dc.referencesTang, L.H., Jian, H.H., Song, C.Y., Bao, D.P., Shang, X.D., Wu, D.Q., Tan, Q. & Zhang, X.H. 2013.Transcriptome analysis of candidate genes and signaling pathways associated with light-induced brown film formation in Lentinula edodes. Applied Microbiology and Biotechnology, 97: 4977-4989.23624682 doi: 10.1007/s00253-013-4832-yen
dc.referencesTerashima, K., Matsumoto, T., Hayashi, E. & Fukumasa-Nakai, Y. 2002. A genetic linkage map of Lentinula edodes (shiitake) based on AFLP markers. Mycological Research, 106:911-917. doi: 10.1017/S0953756202006275en
dc.referencesTerashima, K., Matsumoto, T., Hayashi, E., Kawasaki, S & Fukumasa-Nakai, Y. 2006. Construction of a linkage map of Lentinula edodes (shiitake) with the HEGS (highefficiency genome scanning) system: use of versatile AFLP and PCR-based gene markers. Mycoscience, 47: 336-346. doi: 10.1007/S10267-006-0310-Zen
dc.referencesTien, M. & Kirk, T.K. 1988. Lignin peroxidase of Phanerochaete chrysosporium. In: Wood W., & Kellog S.T. (eds.). Methods in Enzymology. Academic Press, Inc., London, pp. 238-249..en
dc.referencesTurło, J., Gutkowska, B. & Herold, F. 2010a. Effect of selenium enrichment on antioxidant activities and chemical composition of Lentinula edodes (Berk.) Pegler. mycelial extracts. Food and Chemical Toxicology, 48: 1085-1091. doi: 10.1016/j.fct.2010.01.030en
dc.referencesTurło, J., Gutkowska, B., Herold, F., Dawidowski, M., Słowiński, T. & Zobel, A. 2010b. Relationship between selenium accumulation and mycelial cell composition in Lentinula edodes (Berk.) Cultures. Journal of Toxicology and Environmental Health, 73: 1211-1219. doi: 10.1080/15287394.2010.492005en
dc.referencesTurło, J., Gutkowska, B., Herold, F., Klimaszewska, M. & Suchocki, P. 2010c. Optimization of selenium-enriched mycelium of Lentinula edodes (Berk.) Pegler - as a food supplement. Food Biotechnology, 24: 180-196. doi: 10.1080/08905436.2010.482446en
dc.referencesTurło, J., Gutkowska, B., Herold, F., Krzyczkowski, W., Błażewicz, A., Kocjan, R. 2008. Optimization of vitamin B12 biosynthesis by mycelial cultures of Lentinula edodes (Berk.) Pegl. Enzyme and Microbial Technology, 43: 369-374. doi: 10.1016/j.enzmictec.2008.05.005en
dc.referencesTurło, J. & Turło, A. 2013. Application of mushroom cultures and isolated enzymes for biodegradation of organic environmental pollutants. Military Pharmacy and Medicine, 3: 27-36. U.S. Food and Drug Administration, www.fda.gov Valli, K., Wariishi, H. & Gold, M.H. 1992. Degradation of 2,7-dichlorodibenzo-pdioxin by the lignin degrading basidiomycete Phanerochaete chrysosporium. Journal of Bacteriology, 174: 2131-2137.en
dc.referencesVan Griensven, L.J.L.D. 1991. Genetics and breeding of Agaricus. Mushroom Experimental Station. Horst, The Netherlands. Backhuys Publishers, The Netherlands.en
dc.referencesVyas, B.R.M., Sasek, V., Matucha, M. & Bubner, M. 1994. Degradation of 3,3′,4,4′- tetrachlorobiphenyl by selected white rot fungi. Chemosphere, 28: 1127-1134.en
dc.referencesWasser, S.P. & Weiss, A.L. 1999. Medicinal properties of substances occurring in higher Basidiomycetes mushrooms: current perspectives (Review). International Journal of Medicinal Mushroom, 1: 31-62.en
dc.referencesWong, K.-H. & Cheung, P.C.K. 2008. Sclerotia: emerging functional food derived from mushrooms. In: Cheung P.C. (ed.) Mushrooms as Functional Foods. John Wiley and Sons, Hoboken, New Jersey.en
dc.referencesWong, D.W.S. 2009. Structure and action mechanism of ligninolytic enzymes. Applied Biochemistry and Biotechnology, 157: 174-209.18581264 doi: 10.1007/s12010-008-8279-zen
dc.referencesWoolston, B.M., Schlagnhaufer, C., Wilkinson, J., Larsen, J., Shi, Z., Mayer, K.M., Walters, D.S., Curtis, W.R. & Romaine, C.P. 2011. Longdistance translocation of protein during morphogenesis of the fruiting body in the filamentous fungus, Agaricus bisporus. PLOS ONE, 6(12): e28412. doi: 10.1371/journal.pone.0028412en
dc.referencesWu, F.C., Chen, Y.L., Chang, S.M. & Shih, I.L. 2013. Cultivation of medicinal caterpillar fungus, Cordyceps militaris (Ascomycetes), and production of cordycepin using the spent medium from levan fermentation. International Journal of Medicinal Mushrooms, 15 (4): 393-405.23796221 doi: 10.1615/IntJMedMushr.v15.i4.70en
dc.referencesWu, X., Zeng, J., Hu, J., Liao, Q., Zhou, R., Zhang, P. & Chen, Z. 2013. Hepatoprotective effects of aqueous extract from Lingzhi or Reishi medicinal mushroom Ganoderma lucidum (higher basidiomycetes) on α-amanitin-induced liver injury in mice. International Journal of Medicinal Mushrooms, 15 (4): 383-91.23796220 doi: 10.1615/IntJMedMushr.v15.i4.60en
dc.referencesXu, X., Wu, Y. & Chen, H. 2011. Comparative antioxidative characteristics of polysaccharideenriched extracts from natural sclerotia and cultured mycelia in submerged fermentation of Inonotus obliquus. Food Chemistry, 127: 74-79. doi: 10.1016/j.foodchem.2010.12.090en
dc.referencesYamanaka, D., Liu, Y., Motoi, M. & Ohno, N. 2013. Royal sun medicinal mushroom, Agaricus brasiliensis Ka21 (higher Basidiomycetes), as a functional food in humans. International Journal of Medicinal Mushrooms, 15 (4): 335-43.en
dc.referencesYu, H., Han, C., Sun, Y., Qi, X., Shi, Y., Gao, X. & Zhang, C. 2013. The agaricoglyceride of royal sun medicinal mushroom, Agaricus brasiliensis (higher Basidiomycetes) is anti-inflammatory and reverses diabetic glycemia in the liver of mice. International Journal of Medicinal Mushrooms, 15 (4): 357-364.23796217 doi: 10.1615/IntJMedMushr.v15.i4.30en
dc.referencesYue, K., Ye, M., Lin, X. & Zhou, Z. 2013. The artificial cultivation of medicinal Caterpillar Fungus, Ophiocordyceps sinensis (Ascomycetes): a review. International Journal of Medicinal Mushrooms, 15 (5): 425-34.24266368 doi: 10.1615/IntJMedMushr.v15.i5.10en
dc.referencesZhang, J., Nie, S.W., Shan, L. & Ru, B.G. 2002. Transformation of metallothionein gene into mushroom protoplasts by application of electroporation. Acta Botanica Sinica, 44(12): 1445-1449.en
dc.referencesZhu, L., Luo, X., Tang, Q., Liu, Y., Zhou, S., Yang, Y. & Zhang, J. 2013. Isolation, purification, and immunological activities of a low molecular- weight polysaccharide from the Lingzhi or Reishi medicinal mushroom Ganoderma lucidum (higher Basidiomycetes). International Journal of Medicinal Mushrooms, 15 (4): 407-14. 23796222 doi: 10.1615/IntJMedMushr.v15.i4.80en
dc.contributor.authorEmailjadwiga.turlo@wum.edu.plen
dc.identifier.doi10.2478/fobio-2014-0010en


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.