dc.contributor.author | Pełka, Marcin | |
dc.date.accessioned | 2015-06-22T09:37:04Z | |
dc.date.available | 2015-06-22T09:37:04Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 0208-6018 | |
dc.identifier.uri | http://hdl.handle.net/11089/10036 | |
dc.description.abstract | Ensemble approaches based on aggregated models have been applied with success
to discrimination and regression tasks. Nevertheless this approach can be applied to cluster analysis
tasks. Many articles have proved that, by combining different clusterings, an improved solution
can be obtained.
The article presents the possibility of applying ensemble approach based on aggregated models
to cluster symbolic data. The paper presents also presents results of clustering obtained by
applying ensemble approach. | pl_PL |
dc.description.abstract | Podejście wielomodelowe oparte na agregacji modeli jest z powodzeniem wykorzystywane w
zagadnieniach dyskryminacyjnych i regresyjnych. Niemniej jednak podejście to może zostać także
zastosowane w zagadnieniu klasyfikacji. W wielu artykułach wskazuje się, że połączenie wielu
różnych klasyfikacji pozwala otrzymać lepsze wyniki.
Artykuł przedstawia możliwość zastosowania podejścia wielomodelowego w klasyfikacji danych
symbolicznych. W artykule przedstawiono także wyniki klasyfikacji z wykorzystaniem podejścia
wielomodelowego. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl_PL |
dc.relation.ispartofseries | Acta Universitatis Lodziensis. Folia Oeconomica;285 | |
dc.subject | cluster ensemble | pl_PL |
dc.subject | co-associacion matrix | pl_PL |
dc.subject | symbolic data | pl_PL |
dc.title | Clustering of Symbolic Data with Application of Ensemble Approach | pl_PL |
dc.title.alternative | Klasyfikacja danych symbolicznych z wykorzystaniem podejścia wielomodelowego | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | [89]-95 | pl_PL |
dc.contributor.authorAffiliation | Wroclaw, University of Economics, Department of Econometrics and Informatics | pl_PL |
dc.references | Bock H.-H., Diday E. (red.) (2000), Analysis of symbolic data. Explanatory methods for extracting statistical information from complex data, Springer Verlag, Berlin-Heidelberg | pl_PL |
dc.references | Billard L., Diday E. (2006), Symbolic data analysis: conceptual statistics and data mining, John Wiley & Sons Inc., Chichester | pl_PL |
dc.references | Fred A.L.N. (2001), Finding consistent clusters in data partitions, [w:] Kittler J., Roli F. (eds) Multiple Classifier Systems, Vol. 1857 of Lecture Notes in Computer Science, Springer- Verlag, Berlin-Heidelberg, p. 78–86 | pl_PL |
dc.references | Fred A.L.N., Jain A.K. (2005), Combining multiple clustering using evidence accumulation, „IEEE Transaction on Pattern Analysis and Machine Intelligence”, Vol. 27, p. 835–850 | pl_PL |
dc.references | Gahemi R., Sulaiman N., Ibrahim H., Mustapha N. (2009), A survey: Clustering ensemble techniques [w:] Proceedings of World Academy of Science, Engineering and Technology, Vol. 38, p. 636–645 | pl_PL |
dc.references | Jain A.K., Murty M.N., Flynn P.J. (1999), Data clustering: A review, “ACM Computing Surveys”, Vol. 31, No. 3, p. 264–323 | pl_PL |
dc.references | Pełka M. (2012), Ensemble approach for clustering of interval-valued symbolic data, Statistics in Transition, Volume 13, Number 2, s. 335–342 | pl_PL |
dc.references | Rozmus D. (2010), Comparison of clustering accuracy in ensemble approach based on co-occurence data, [in:] Fink A., Lausen B., Seidel W., Ultsch A. (eds), Advances in Data Analysis, Data Handling and Business Intelligence, Springer-Verlang, Berlin-Heidelberg, p. 174–184 | pl_PL |
dc.references | Strehl A., Gosh J. (2002), Cluster ensembles – a knowledge reuse framework for combining multiple partitions, “Journal of Machine Learning Research”, Vol. 3 (Dec), p. 587–617 | pl_PL |