dc.contributor.author | Przeradzki, Bogdan | |
dc.date.accessioned | 2015-11-13T12:48:20Z | |
dc.date.available | 2015-11-13T12:48:20Z | |
dc.date.issued | 1996 | |
dc.identifier.issn | 0208-6204 | |
dc.identifier.uri | http://hdl.handle.net/11089/13673 | |
dc.description.abstract | Udowodnione jest istnienie rozwiązań równań nieliniowych postaci
Lx = N(x), gdzie L jest operatorem liniowym indeksu 0, a N odwzorowaniem
nieliniowym ciągłym subliniowym lub o wzroście liniowym.
Zakładane są warunki uogólniające warunki Landesmana-Lazera.
Rezultaty abstrakcyjne zastosowano do problemów brzegowych,
w których część nieliniowa zależy także od pochodnych, a rezonans
może być wielowymiarowy. | pl_PL |
dc.description.sponsorship | Zadanie pt. „Digitalizacja i udostępnienie w Cyfrowym Repozytorium Uniwersytetu Łódzkiego kolekcji czasopism naukowych wydawanych przez Uniwersytet Łódzki” nr 885/P-DUN/2014 zostało dofinansowane ze środków MNiSW w ramach działalności upowszechniającej naukę. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl_PL |
dc.title | Operator equations at resonance with unbounded nonlinearities | pl_PL |
dc.title.alternative | Rezonansowe równania operatorowe z nieograniczonymi częściami nieliniowymi | pl_PL |
dc.type | Article | pl_PL |
dc.rights.holder | © Copyright by Wydawnictwo Uniwersytetu Łódzkiego, Łódź 1996 | pl_PL |
dc.page.number | 33-58 | pl_PL |
dc.contributor.authorAffiliation | Institute of Mathematics, Łódź University, ul. Banacha 22, 90 - 238 Łódź, Poland | pl_PL |
dc.references | S. Agmon, Math. Stuil. 2 (1905), Lectures on elliptic boundary problems, Van Nostrand, Princeton N.Y. | pl_PL |
dc.references | E. Coddington, N. Levison, Theory of Ordinary Differential liquations, Me Graw-Hill Book Comp., N.Y., 1955. | pl_PL |
dc.references | P. Drabek, Landesman-Lazer type condition and nonlinearities with linear growth, Czechoslovak. Math. J. 40 no. (115) (1990), 70-87. | pl_PL |
dc.references | P. Drabek, Landesman-Lazer condition for nonlinear problems with jumping nonlinearihes (to appear) J. Diiff. Equations. | pl_PL |
dc.references | S. Fučik, Nonlinear equations with noninvertible linear part, Czechoslovak Math. J. 24 no. 99 (1974), 259-271. | pl_PL |
dc.references | S. Fučik, Nonlinear equations with noninvertible linear part, Czechoslovak Math. .). 24 no. 99 (1974), 259-271. | pl_PL |
dc.references | S. Fučik, Surjectivity of operators involving linear noninvertible part and nonlinear compact perturbation, Funkcial. Ekvacioj 17 (1974), 73-83. | pl_PL |
dc.references | S. Fučik, Solvability of Nonlinear Equations and Boundary Value Problems, D. Reidel Publ. Comp., Dordrecht, 1980. | pl_PL |
dc.references | R. Iannacci, M.M. Nkashama, Nonlinear two point boundary value problems of resonance without Landesman-Lazer condition, Proc. Amer. Math. Soc. 106 no. 4 (1989), 943-952. | pl_PL |
dc.references | R. Iannacci, M.M. Nkashama, Unbounded perturbations of forced second ordinary defferential equations at resonance (to appear).J. Diff. Equations. | pl_PL |
dc.references | R. Iannacci, M. M. Nkashama, J. R. Ward, Nonlinear second order elliptic partial differential equations at resonance, Trans.Amer. Soc. 311 no. 2 (1989), 710-727. | pl_PL |
dc.references | E. M. Landesman, A. C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mecli. 19 (1970), 609-623. | pl_PL |
dc.references | N. G. Lloyd, Degree Theory, Cambridge Univ. Press. | pl_PL |
dc.references | J. L. Mawhin, Topological degree methods in nonlinear boundary value problems, Conf. Series in M ath., vol. 40, Amer. Math. Soc., Providence R.I., 1979. | pl_PL |
dc.references | J. L. Mawhin, J. R. Ward, Periodic solutions of some forced Lienard differential equations at resonance, Arch. Math. 41 (1983), 337-351. | pl_PL |
dc.references | L. Mawhin, J. R. Ward, M. Willem, Necessary and sufficient conditions for the solvability of a nonlinear two-point boundary value problem, Proc. Amer. Math, Soc. 93 (1985), 667-674. | pl_PL |
dc.references | J. Nečas, On the range of nonlinear operators with linear asymptotes which are not invertible, Comment. Math. Univ. Caroline. | pl_PL |
dc.references | L. Nirenberg, An application of generalized degree to a class of nonlinear problems 3rd Colloq. Analyse Fonctionalle, Liege 1970 Math. Vander 1971. | pl_PL |
dc.references | L. Nirenberg, Lectures on Linear Partial Differential Equations, Regional Conf. Series in Math., vol. 17, Amer. Math. Soc., Providence R.I., 1972. | pl_PL |
dc.references | B. Przeradzki, An abstract version of the resonance theorem, Ann. Polon. Math. 53 (1991), 35-43. | pl_PL |
dc.references | M. Schechter, J. Shapiro, M. Anow, Solution of the nonlinear problem Au = N u in a Banach space, Trans. Amor. Math. 241 (1978), 69-78. | pl_PL |
dc.references | M. M. Vajnberg, Variational Methods for the Nonlinear Operators, Holden-Day, San Francisco Calif., 1964. | pl_PL |
dc.references | J. R. Ward, Periodic solutions for systems of second order differential equations, J. Math. Anal. Appl. 81 (1981), 92-98. | pl_PL |
dc.references | S. A. Williams, A sharp sufficient condition for solution of a nonlinear elliptic boundary value problem, J. Diff. Equations 8 (1970), 580 586. | pl_PL |