Show simple item record

dc.contributor.authorFigallo, Aldo V.
dc.contributor.authorPelaitay, Gustavo
dc.date.accessioned2016-04-28T09:52:02Z
dc.date.available2016-04-28T09:52:02Z
dc.date.issued2015
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/17904
dc.description.abstractIn 2015, A.V. Figallo and G. Pelaitay introduced tense n×m-valued Łukasiewicz–Moisil algebras, as a common generalization of tense Boolean algebras and tense n-valued Łukasiewicz–Moisil algebras. Here we initiate an investigation into the class tpLMn×m of tense polyadic n × m-valued Łukasiewicz–Moisil algebras. These algebras constitute a generalization of tense polyadic Boolean algebras introduced by Georgescu in 1979, as well as the tense polyadic n-valued Łukasiewicz–Moisil algebras studied by Chiriţă in 2012. Our main result is a representation theorem for tense polyadic n × m-valued Łukasiewicz–Moisil algebras.pl_PL
dc.description.sponsorshipThe support of CONICET is gratefully acknowledged by Gustavo Pelaitay.pl_PL
dc.language.isoenpl_PL
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl_PL
dc.relation.ispartofseriesBulletin of the Section of Logic;3/4
dc.titleTense Polyadic N × M-Valued Łukasiewicz–Moisil Algebraspl_PL
dc.typeArticlepl_PL
dc.rights.holder© Copyright by Aldo V. Figallo, Gustavo Pelaitay, Łódź 2015; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2015pl_PL
dc.page.number155–181pl_PL
dc.contributor.authorAffiliationInstituto de Ciencias Básicas, Universidad Nacional de San Juan, 5400 San Juan, Argentina.pl_PL
dc.contributor.authorAffiliationDepartamento de Matemática, Universidad Nacional de San Juan, 5400 San Juan, Argentina; Instituto de Ciencias Básicas, Universidad Nacional de San Juan, 5400 San Juan, Argentina; Universidad Nacional del Sur, 8000 Bahía Blanca, Argentina.pl_PL
dc.identifier.eissn2449-836X
dc.referencesBoicescu V., Filipoiu A., Georgescu G., Rudeanu S., Łukasiewicz-Moisil Algebras, Annals of Discrete Mathematics 49 (1991), North-Holland.pl_PL
dc.referencesBotur M., Chajda I., Halaš R., Kolařik M., Tense operators on Basic Algebras, Internat. J. Theoret. Phys. 50/12 (2011), pp. 3737–3749.pl_PL
dc.referencesBotur M., Paseka J., On tense MV-algebras, Fuzzy Sets and Systems 259 (2015), pp. 111–125.pl_PL
dc.referencesBurges J., Basic tense logic, [in:] Gabbay, D.M., Günter F., (eds.) Handbook of Philosophical Logic II, Reidel, Dordrecht (1984), pp. 89–139.pl_PL
dc.referencesChajda I., Paseka J., Dynamic effect algebras and their representations, Soft Computing 16/10 (2012), pp. 1733–1741.pl_PL
dc.referencesChajda I., Kolařik M., Dynamic Effect Algebras, Math. Slovaca 62/3 (2012), pp. 379–388.pl_PL
dc.referencesChiriţă C., Tense θ-valued Moisil propositional logic, Int. J. of Computers, Communications and Control 5 (2010). pp. 642–653.pl_PL
dc.referencesChiriţă C., Tense θ–valued Łukasiewicz-Moisil algebras, J. Mult. Valued Logic Soft Comput. 17/1 (2011), pp. 1–24.pl_PL
dc.referencesChiriţă C., Polyadic tense θ-valued Łukasiewicz-Moisil algebras, Soft Computing 16/6 (2012), pp. 979–987.pl_PL
dc.referencesChiriţă C., Tense Multiple-valued Logical systems, PhD Thesis, University of Bucharest, Bucharest (2012).pl_PL
dc.referencesDiaconescu D., Georgescu G., Tense operators on MV-algebras and Łukasiewicz-Moisil algebras, Fund. Inform. 81/4 (2007), pp. 379–408. [12]pl_PL
dc.referencesDrăgulici D., Polyadic BL-algebras. A representation theorem, J. Mult.-Valued Logic Soft Comput. 16, no. 3–5 (2010), pp. 265–302.pl_PL
dc.referencesFigallo A. V., Sanza C., Algebras de Lukasiewicz n × m-valuadas con negación, Noticiero de la Unión Matemática Argentina 93 (2000).pl_PL
dc.referencesFigallo A. V., Sanza C., The NSn×m-propositional calculus, Bulletin of the Section of Logic 35/2(2008), pp. 67–79.pl_PL
dc.referencesFigallo A. V., Pelaitay G., Note on tense SHn-algebras, An. Univ. Craiova Ser. Mat. Inform. 38/4 (2011), pp. 24–32.pl_PL
dc.referencesFigallo A. V., Pelaitay G., Discrete duality for tense Łukasiewicz-Moisil algebras, Fund. Inform. 136/4 (2015), pp. 317–329.pl_PL
dc.referencesFigallo A. V., Sanza C., Monadic n × m-Łukasiewicz-Mosil Algebras, Mathematica Bohemica 137/4 (2012), pp. 425–447.pl_PL
dc.referencesFigallo A. V., Pelaitay G., n × m-valued Łukasiewicz–Moisil algebras with two modal operators, South American Journal of Logic 1/1 (2015), pp. 267–281.pl_PL
dc.referencesFigallo A. V., Pelaitay G., A representation theorem for tense n × m-valued Łukasiewicz-Moisil algebras, Mathematica Bohemica 140/3 (2015), pp. 345–360.pl_PL
dc.referencesGeorgescu G., Vraciu C., Algebre Boole monadice şi algebre Łukasiewicz monadice, Studii Cerc. Mat. 23/7 (1971), pp. 1025–1048.pl_PL
dc.referencesGeorgescu G., A representation theorem for tense polyadic algebras, Mathematica, Tome 21 (44), 2 (1979), pp. 131–138.pl_PL
dc.referencesHalmos P. R., Algebraic logic, Chelsea, New York, (1962).pl_PL
dc.referencesRachunek J., Šalounová D., Monadic GMV-algebras, Archive for Mathematical Logic 47, 3, 277, (2008).pl_PL
dc.referencesMoisil Gr. C., Essais sur les logiques non Chrysippiennes, Ed. Academiei Bucarest, 1972.pl_PL
dc.referencesMonk J. D., Polyadic Heyting algebras, Notices Amer. Math. Soc., 7, 735, (1966).pl_PL
dc.referencesPaseka J., Operators on MV-algebras and their representations, Fuzzy Sets and Systems 232 (2013), pp. 62–73.pl_PL
dc.referencesSanza C., Notes on n × m-valued Łukasiewicz algebras with negation, L. J. of the IGPL 6/12 (2004), pp. 499–507.pl_PL
dc.referencesSanza C., n × m-valued Łukasiewicz algebras with negation, Rep. Math. Logic 40 (2006), pp. 83–106.pl_PL
dc.referencesSanza C., On n × m-valued Łukasiewicz-Moisil algebras, Cent. Eur. J. Math. 6/3 (2008), pp. 372–383.pl_PL
dc.referencesSchwartz D., Theorie der polyadischen MV-Algebren endlicher Ordnung, Math. Nachr. 78 (1977), pp. 131–138.pl_PL
dc.referencesSuchoń W., Matrix Łukasiewicz Algebras, Rep. on Math. Logic 4 (1975), pp. 91–104.pl_PL
dc.contributor.authorEmailavfigallo@gmail.compl_PL
dc.contributor.authorEmailgpelaitay@gmail.compl_PL
dc.identifier.doi10.18778/0138-0680.44.3.4.05
dc.relation.volume44pl_PL


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record