Show simple item record

dc.contributor.authorBrzezińska, Justyna
dc.date.accessioned2013-06-04T16:19:10Z
dc.date.available2013-06-04T16:19:10Z
dc.date.issued2012
dc.identifier.issn0208-6018
dc.identifier.urihttp://hdl.handle.net/11089/1890
dc.description.abstractLog-linear models are widely used for qualitative data in multidimensional contingency tables. Hierarchical log-linear models are models that include all lower-order terms composed from variables contained in a higher-order model term. The starting point is a saturated model, then homogenous associations, conditional independence and complete independence. There are several statistics that help to choose the best model. The first is the likelihood ratio approach, next is AIC and BIC information criteria. In R software there is loglm() function in MASS library and glm in stats library. The first approach is presented in this paperpl_PL
dc.language.isoenpl_PL
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl_PL
dc.relation.ispartofseriesActa Universitatis Lodziensis, Folia Oeconomica;269
dc.subjectlog-linear modelspl_PL
dc.subjecthierarchical log-linear modelspl_PL
dc.subjectAICpl_PL
dc.subjectBICpl_PL
dc.titleHierarchical Log-linear Models for Contingency Tablespl_PL
dc.title.alternativeHierarchiczne modele logarytmiczno-liniowe dla tablic kontyngencjipl_PL
dc.typeArticlepl_PL
dc.page.number123-129


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record