Show simple item record

dc.contributor.authorDegauquier, Vincent
dc.date.accessioned2019-01-14T14:03:04Z
dc.date.available2019-01-14T14:03:04Z
dc.date.issued2018
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/26409
dc.description.abstractThe temporal logic KtT4 is the modal logic obtained from the minimal temporal logic Kt by requiring the accessibility relation to be reflexive (which corresponds to the axiom T) and transitive (which corresponds to the axiom 4). This article aims, firstly, at providing both a model-theoretic and a proof-theoretic characterisation of a four-valued extension of the temporal logic KtT4 and, secondly, at identifying some of the most useful properties of this extension in the context of partial and paraconsistent logics.en_GB
dc.language.isoenen_GB
dc.publisherWydawnictwo Uniwersytetu Łódzkiegoen_GB
dc.relation.ispartofseriesBulletin of the Section of Logic;1
dc.rightsThis work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.en_GB
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0en_GB
dc.subjecttemporal logicen_GB
dc.subjectmany-valued logicen_GB
dc.subjectbi-intuitionistic logicen_GB
dc.subjectparaconsistent logicen_GB
dc.subjectsequent calculusen_GB
dc.subjectdualityen_GB
dc.subjectcut-redundancyen_GB
dc.titleA Useful Four-Valued Extension of the Temporal Logic KtT4en_GB
dc.typeArticleen_GB
dc.page.number15-31
dc.contributor.authorAffiliationEspace philosophique de Namur, University of Namur, Rue de Bruxelles 61, 5000 Namur – Belgium
dc.identifier.eissn2449-836X
dc.referencesN. D. Belnap, A useful four-valued logic, [in:] J. M. Dunn and G. Epstein (eds.), Modern uses of multiple-valued logic, Reidel Publishing Company, Dordrecht, 1977, pp. 8–37.en_GB
dc.referencesA. Bochman, Biconsequence relations: a four-valued formalism of reasoning with inconsistency and incompleteness, Notre Dame Journal of Formal Logic, Vol. 39, No. 1 (1998), pp. 47–73.en_GB
dc.referencesN. Bonnette and R. Goré, A labelled sequent system for tense logic Kt, [in:] G. Antoniou and J. Slaney (eds.), Advanced topics in artificial intelligence. 11th Australian joint conference on artificial intelligence, AI’98. Brisbane, Australia, July 13–17, 1998. Selected papers, Springer-Verlag, Berlin, 1998, pp. 71–82.en_GB
dc.referencesA. B. M. Brunner and W. A. Carnielli, Anti-intuitionism and paraconsistency, Journal of Applied Logic, Vol. 3, No. 1 (2005), pp. 161–184.en_GB
dc.referencesJ. P. Burgess, Basic tense logic, [in:] D. Gabbay and F. Guenthner (eds.), Handbook of philosophical logic. Volume II. Extensions of classical logic, Reidel Publishing Company, Dordrecht, 1984, pp. 89–133.en_GB
dc.referencesV. Degauquier, Cuts, gluts and gaps, Logique et Analyse, Vol. 55, No. 218 (2012), pp. 229–240.en_GB
dc.referencesJ. M. Dunn, Intuitive semantics for first-degree entailments and ‘coupled trees’, Philosophical Studies, Vol. 29, No. 3 (1976), pp. 149–168.en_GB
dc.referencesJ. M. Dunn, Partiality and its dual, Studia Logica, Vol. 66, No. 1 (2000), pp. 5–40.en_GB
dc.referencesJ. Y. Girard, Three-valued logic and cut-elimination: the actual meaning of Takeuti’s conjecture, Dissertationes Mathematicae (Rozprawy Matematyczne), Vol. 136 (1976), pp. 1–49.en_GB
dc.referencesK. Gödel, On the intuitionistic propositional calculus, [in:] S. Feferman (ed), Collected works. Volume I. Publications 1929–1936, Oxford University Press, New York, 1986, pp. 222–225.en_GB
dc.referencesR. Goré, Dual intuitionistic logic revisited, [in:] R. Dyckhoff (ed), Automated reasoning with analytic tableaux and related methods. International conference, TABLEAUX 2000. St Andrews, Scotland, UK, July 3–7, 2000. Proceedings, Springer-Verlag, Berlin, 2000, pp. 252–267.en_GB
dc.referencesP. Łukowski, Modal interpretation of Heyting-Brouwer logic, Bulletin of the Section of Logic, Vol. 25, No. 2 (1996), pp. 80–83.en_GB
dc.referencesR. Muskens, On partial and paraconsistent logics, Notre Dame Journal of Formal Logic, Vol. 40, No. 3 (1999), pp. 352–374.en_GB
dc.referencesS. Negri, Proof analysis in modal logic, Journal of Philosophical Logic, Vol. 34, No. 5/6 (2005), pp. 507–544.en_GB
dc.referencesG. Priest, Many-valued modal logics: a simple approach, The Review of Symbolic Logic, Vol. 1, No. 2 (2008), pp. 190–203.en_GB
dc.referencesC. Rauszer, An algebraic and Kripke-style approach to a certain extension of intuitionistic logic, Dissertationes Mathematicae (Rozprawy Matematyczne), Vol. 167 (1980), pp. 1–62.en_GB
dc.referencesN. Rescher and A. Urquhart, Temporal logic, Springer-Verlag, Wien, 1971.en_GB
dc.referencesG. Restall, Laws of non-contradiction, laws of the excluded middle, and logics, [in:] G. Priest, J. Beall and B. Armour-Garb (eds.), The law of non-contradiction. New philosophical essays, Clarendon Press, Oxford, 2004, pp. 73–84.en_GB
dc.contributor.authorEmailvincent.degauquier@gmail.com
dc.identifier.doi10.18778/0138-0680.47.1.02
dc.relation.volume47en_GB


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
Except where otherwise noted, this item's license is described as This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.