Show simple item record

dc.contributor.authorKornacki, Andrzej
dc.contributor.authorBochniak, Andrzej
dc.date.accessioned2019-04-26T14:15:18Z
dc.date.available2019-04-26T14:15:18Z
dc.date.issued2019
dc.identifier.issn0208-6018
dc.identifier.urihttp://hdl.handle.net/11089/28026
dc.description.abstractIn the paper, the problem of determination of the number of observations necessary for the appropriate use of the non‑parametric Mann‑Whitney test in the case of Pareto distribution is presented. Using the method provided by Noether, the sample size is calculated which guarantees that the Mann‑Whitney U test at a given significance level α has the pre‑assumed power 1 –β. The presented method is examined by calculating empirical power in computer simulations. Moreover, different techniques of rounding the estimated sample size to an even integer number are studied. It is important when two equinumerous samples are to be compared.en_GB
dc.description.abstractW artykule poruszony został problem wyznaczenia liczby obserwacji niezbędnej do poprawnego stosowania nieparametrycznego testu Manna‑Whitneya. W rozważaniach rozpatrywane są próby pochodzące z populacji o rozkładzie Pareto. Korzystając z metody podanej przez G. E. Noethera, szacowany jest rozmiar próby, który gwarantuje, że test Manna‑Whitneya ma z góry ustaloną moc 1 – β na danym poziomie istotności α. W pracy teoretyczna moc testu jest porównywana z mocą empiryczną oszacowaną przez symulacje komputerowe. Ponadto badany jest wpływ różnych metod zaokrąglania estymowanej wielkości próby do liczby parzystej, gdy porównywane są dwie równoliczne próby.pl_PL
dc.language.isoenpl_PL
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl_PL
dc.rightsThis work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.pl_PL
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0pl_PL
dc.subjectMann‑Whitney testen_GB
dc.subjectsample sizeen_GB
dc.subjecttest poweren_GB
dc.subjectempirical poweren_GB
dc.subjectPareto distributionen_GB
dc.subjectNoether methoden_GB
dc.subjecttest Manna‑Whitneyapl_PL
dc.subjectrozmiar próbypl_PL
dc.subjectmoc testupl_PL
dc.subjectmoc empirycznapl_PL
dc.subjectrozkład Paretopl_PL
dc.subjectmetoda Noetherapl_PL
dc.titleA Simulation Study on the Sample Size in the Mann‑Whitney Test in the Case of Pareto Distributionpl_PL
dc.title.alternativeBadania symulacyjne związane z wyznaczaniem liczebności próby w teście Manna‑Whitneya w przypadku rozkładu Paretoen_GB
dc.typeArticlepl_PL
dc.page.number27-42
dc.contributor.authorAffiliationDepartment of Applied Mathematics and Computer Science, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
dc.contributor.authorAffiliationDepartment of Applied Mathematics and Computer Science, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
dc.identifier.eissn2353-7663
dc.referencesBartlett J. E., Kotrlik J. W., Higgins C. C. (2001), Organizational Research: Determining Appropriate Sample Size in Survey Research, “Learning and Performance Journal”, no. 19, pp. 43–50.pl_PL
dc.referencesChander G. N. (2017), Sample size estimation, “The Journal of Indian Prosthodontic Society”, vol. 17(3), pp. 217–218, http://dx.doi.org/10.4103/jips.jips_169_17.pl_PL
dc.referencesDe Groot M. M. (1981), Optymalne decyzje statystyczne, Państwowe Wydawnictwo Naukowe, Warszawa.pl_PL
dc.referencesDias K. P., Edwards A. S. (2016), Using Statistical Approaches to Model Natural Disasters, “American Journal of Undergraduate Research”, vol. 13, no. 2, pp. 87–104.pl_PL
dc.referencesDraxler C., Kubinger K. D. (2018), Power and Sample Size Considerations in Psychometrics, [in:] J. Pilz, D. Rasch, V. B. Melas, K. Moder (eds.), Statistics and Simulation, Springer Proceedings in Mathematics & Statistics 231, http://dx.doi.org/10.1007/978–3–319–76035–3_3.pl_PL
dc.referencesFisz M. (1967), Rachunek prawdopodobieństwa i statystyka matematyczna, Państwowe Wydawnictwo Naukowe, Warszawa.pl_PL
dc.referencesGood I. J. (1953), The population frequencies of species and the estimation of population parameters, “Biometrika”, vol. 40, p. 237–264.pl_PL
dc.referencesMann H. B., Whitney D. R. (1947), On a test of whether one of two random variables is stochastically larger than the other, “Annals of Mathematical Statistics”, vol. 18(1), pp. 50–60.pl_PL
dc.referencesMartinez W. L., Martinez A. R. (2015), Computational Statistics Handbook with MATLAB, third edition, Computer Science and Data Analysis Series, Chapman & Hall/CRC Press, New York.pl_PL
dc.referencesNoether G. E. (1987), Sample size determination for some common nonparametric test, “JASA”, vol. 82, pp. 645–647.pl_PL
dc.referencesPapageorgiou S. N. (2018), On the sample size of clinical trials, “Journal of Orthodontics”, vol. 45(3), pp. 210–212, http://dx.doi.org/10.1080/14653125.2018.1501929.pl_PL
dc.referencesPareto V. (1897), Course d’Economie Politique, F. Rouge Editor, Lusanne–Paris.pl_PL
dc.referencesSzymańska A. (2011), The influence of sample size on the estimation of net premius and net premius size in civil responsibility car insurance, “Acta Universitatis Lodziensis. Folia Oeconomica”, no. 255, pp. 35–47.pl_PL
dc.referencesTaherdoost H. (2017), Determining Sample Size; How to Calculate Survey Sample Size, “International Journal of Economics and Management Systems”, no. 2, pp. 237–239.pl_PL
dc.contributor.authorEmailandrzej.kornacki@up.lublin.pl
dc.contributor.authorEmailandrzej.bochniak@up.lublin.pl
dc.identifier.doi10.18778/0208-6018.340.02
dc.relation.volume1pl_PL
dc.subject.jelC12
dc.subject.jelC15


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
Except where otherwise noted, this item's license is described as This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.