dc.contributor.author | Sayed Ahmed, Tarek | |
dc.date.accessioned | 2022-03-10T17:28:35Z | |
dc.date.available | 2022-03-10T17:28:35Z | |
dc.date.issued | 2021-07-21 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/41067 | |
dc.description.abstract | Fix a finite ordinal \(n\geq 3\) and let \(\alpha\) be an arbitrary ordinal. Let \(\mathsf{CA}_n\) denote the class of cylindric algebras of dimension \(n\) and \(\sf RA\) denote the class of relation algebras. Let \(\mathbf{PA}_{\alpha}(\mathsf{PEA}_{\alpha})\) stand for the class of polyadic (equality) algebras of dimension \(\alpha\). We reprove that the class \(\mathsf{CRCA}_n\) of completely representable \(\mathsf{CA}_n\)s, and the class \(\sf CRRA\) of completely representable \(\mathsf{RA}\)s are not elementary, a result of Hirsch and Hodkinson. We extend this result to any variety \(\sf V\) between polyadic algebras of dimension \(n\) and diagonal free \(\mathsf{CA}_n\)s. We show that that the class of completely and strongly representable algebras in \(\sf V\) is not elementary either, reproving a result of Bulian and Hodkinson. For relation algebras, we can and will, go further. We show the class \(\sf CRRA\) is not closed under \(\equiv_{\infty,\omega}\). In contrast, we show that given \(\alpha\geq \omega\), and an atomic \(\mathfrak{A}\in \mathsf{PEA}_{\alpha}\), then for any \(n/p> | en |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Bulletin of the Section of Logic;4 | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | Algebraic logic | en |
dc.subject | relation algebras | en |
dc.subject | cylindric algebras | en |
dc.subject | polyadic algebras | en |
dc.subject | complete representations | en |
dc.title | On Complete Representations and Minimal Completions in Algebraic Logic, Both Positive and Negative Results | en |
dc.type | Other | |
dc.page.number | 465-511 | |
dc.contributor.authorAffiliation | Cairo University, Department of Mathematics, Faculty of Science | en |
dc.identifier.eissn | 2449-836X | |
dc.references | H. Andréka, M. Ferenczi, I. Németi (eds.), Cylindric-like Algebras and Algebraic Logic, Springer Berlin Heidelberg, Berlin, Heidelberg (2013), DOI: https://doi.org/10.1007/978-3-642-35025-2_1 | en |
dc.references | H. Andréka, I. Németi, T. S. Ahmed, Omitting types for finite variable fragments and complete representations of algebras, Journal of Symbolic Logic, vol. 73(1) (2008), pp. 65–89, DOI: https://doi.org/10.2178/jsl/1208358743 | en |
dc.references | A. Daigneault, J. Monk, Representation Theory for Polyadic algebras, Fundamenta Informaticae, vol. 52 (1963), pp. 151–176, DOI: https://doi.org/10.4064/fm-52-2-151-176 | en |
dc.references | M. Ferenczi, The Polyadic Generalization of the Boolean Axiomatization of Fields of Sets, Transactions of the American Mathematical Society, vol. 364(2) (2012), pp. 867–886, DOI: https://doi.org/10.2307/41407800 | en |
dc.references | M. Ferenczi, A New Representation Theory: Representing Cylindric-like Algebras by Relativized Set Algebras, [in:] H. Andréka, M. Ferenczi, I. Németi (eds.), Cylindric-like Algebras and Algebraic Logic, Springer Berlin Heidelberg, Berlin, Heidelberg (2013), pp. 135–162, DOI: https://doi.org/10.1007/978-3-642-35025-2_7 | en |
dc.references | M. Ferenczi, Representations of polyadic-like equality algebras, Algebra Universalis, vol. 75(1) (2016), pp. 107–125, DOI: https://doi.org/10.1007/s00012-015-0360-1 | en |
dc.references | L. Henkin, J. Monk, A. Tarski, Cylindric Algebras Parts I, II, North Holland, Amsterdam (1971). | en |
dc.references | R. Hirsch, Relation algebra reducts of cylindric algebras and complete representations, Journal of Symbolic Logic, vol. 72(2) (2007), pp. 673–703, DOI: https://doi.org/10.2178/jsl/1185803629 | en |
dc.references | R. Hirsch, I. Hodkinson, Complete representations in algebraic logic, Journal of Symbolic Logic, vol. 62(3) (1997), pp. 816–847, DOI: https://doi.org/10.2307/2275574 | en |
dc.references | R. Hirsch, I. Hodkinson, Relation algebras by games, vol. 147 of Studies in Logic and the Foundations of Mathematics, North Holland, Amsterdam (2002). | en |
dc.references | R. Hirsch, I. Hodkinson, Completions and Complete Representations, [in:] H. Andréka, M. Ferenczi, I. Németi (eds.), Cylindric-like Algebras and Algebraic Logic, Springer Berlin Heidelberg, Berlin, Heidelberg (2013), pp. 61–89, DOI: https://doi.org/10.1007/978-3-642-35025-2_4 | en |
dc.references | R. Hirsch, I. Hodkinson, R. D. Maddux, Relation algebra reducts of cylindric algebras and an application to proof theory, Journal of Symbolic Logic, vol. 67(1) (2002), pp. 197–213, DOI: https://doi.org/10.2178/jsl/1190150037 | en |
dc.references | R. Hirsch, T. Sayed Ahmed, The neat embedding problem for algebras other than cylindric algebras and for infinite dimensions, The Journal of Symbolic Logic, vol. 79(1) (2014), pp. 208–222, DOI: https://doi.org/10.1017/jsl.2013.20 | en |
dc.references | I. Hodkinson, Atom structures of cylindric algebras and relation algebras, Annals of Pure and Applied Logic, vol. 89(2) (1997), pp. 117–148, DOI: https://doi.org/10.1016/S0168-0072(97)00015-8 | en |
dc.references | J. S. Johnson, Nonfinitizability of classes of representable polyadic algebras, Journal of Symbolic Logic, vol. 34(3) (1969), pp. 344–352, DOI: https://doi.org/10.2307/2270901 | en |
dc.references | R. D. Maddux, Nonfinite axiomatizability results for cylindric and relation algebras, Journal of Symbolic Logic, vol. 54(3) (1989), pp. 951–974, DOI: https://doi.org/10.2307/2274756 | en |
dc.references | T. Sayed Ahmed, The class of neat reducts is not elementary, Logic Journal of the IGPL, vol. 9(4) (2001), pp. 593–628, DOI: https://doi.org/10.1093/jigpal/9.4.593 | en |
dc.references | T. Sayed Ahmed, The class of 2-dimensional neat reducts is not elementary, Fundamenta Mathematicae, vol. 172 (2002), pp. 61–81, DOI: https://doi.org/10.4064/fm172-1-5 | en |
dc.references | T. Sayed Ahmed, A Modeltheoretic Solution to a Problem of Tarski, Mathematical Logic Quarterly, vol. 48(3) (2002), pp. 343–355, DOI: https://doi.org/10.1002/1521-3870(200204)48:33.0.CO;2-4 | en |
dc.references | T. Sayed Ahmed, Algebraic Logic, Where Does it Stand Today?, Bulletin of Symbolic Logic, vol. 11(4) (2005), pp. 465–516, DOI: https://doi.org/10.2178/bsl/1130335206 | en |
dc.references | T. Sayed Ahmed, A Note on Neat Reducts, Studia Logica: An International Journal for Symbolic Logic, vol. 85(2) (2007), pp. 139–151, DOI: https://doi.org/10.2307/40210764 | en |
dc.references | T. Sayed Ahmed, (RaCA_n) is not elementary for (ngeq 5), Bulletin of the Section of Logic, vol. 37(2) (2008), pp. 123–136. | en |
dc.references | T. Sayed Ahmed, Atom-canonicity, relativized representations and omitting types for clique guarded semantics and guarded logics (2013), arXiv:1308.6165. | en |
dc.references | T. Sayed Ahmed, Completions, Complete Representations and Omitting Types, [in:] H. Andréka, M. Ferenczi, I. Németi (eds.), Cylindric-like Algebras and Algebraic Logic, Springer Berlin Heidelberg, Berlin, Heidelberg (2013), pp. 205–221, DOI: https://doi.org/10.1007/978-3-642-35025-2_10 | en |
dc.references | T. Sayed Ahmed, Neat Reducts and Neat Embeddings in Cylindric Algebras, [in:] H. Andréka, M. Ferenczi, I. Németi (eds.), Cylindric-like Algebras and Algebraic Logic, Springer Berlin Heidelberg, Berlin, Heidelberg (2013), pp. 105–131, DOI: https://doi.org/10.1007/978-3-642-35025-2_6 | en |
dc.references | T. Sayed Ahmed, The class of completely representable polyadic algebras of infinite dimensions is elementary, Algebra Universalis, vol. 72(4) (2014), pp. 371–380, DOI: https://doi.org/10.1007/s00012-014-0307-y | en |
dc.references | T. Sayed Ahmed, On notions of representability for cylindric‐polyadic algebras, and a solution to the finitizability problem for quantifier logics with equality, Mathematical Logic Quarterly, vol. 61(6) (2015), pp. 418–477, DOI: https://doi.org/10.1002/malq.201300064 | en |
dc.references | T. Sayed Ahmed, Splitting methods in algebraic logic: Proving results on non-atom-canonicity, non-finite axiomatizability and non-first oder definability for cylindric and relation algebras (2015), arXiv:1503.02189. | en |
dc.references | T. Sayed Ahmed, Atom-canonicity in algebraic logic in connection to omitting types in modal fragments of (L_{omega, omega}) (2016), arXiV:1608.03513. | en |
dc.contributor.authorEmail | rutahmed@gmail.com | |
dc.identifier.doi | 10.18778/0138-0680.2021.17 | |
dc.relation.volume | 50 | |