Show simple item record

dc.contributor.authorSayed Ahmed, Tarek
dc.date.accessioned2022-03-10T17:28:35Z
dc.date.available2022-03-10T17:28:35Z
dc.date.issued2021-07-21
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/41067
dc.description.abstractFix a finite ordinal \(n\geq 3\) and let \(\alpha\) be an arbitrary ordinal. Let \(\mathsf{CA}_n\) denote the class of cylindric algebras of dimension \(n\) and \(\sf RA\) denote the class of relation algebras. Let \(\mathbf{PA}_{\alpha}(\mathsf{PEA}_{\alpha})\) stand for the class of polyadic (equality) algebras of dimension \(\alpha\). We reprove that the class \(\mathsf{CRCA}_n\) of completely representable \(\mathsf{CA}_n\)s, and the class \(\sf CRRA\) of completely representable \(\mathsf{RA}\)s are not elementary, a result of Hirsch and Hodkinson. We extend this result to any variety \(\sf V\) between polyadic algebras of dimension \(n\) and diagonal free \(\mathsf{CA}_n\)s. We show that that the class of completely and strongly representable algebras in \(\sf V\) is not elementary either, reproving a result of Bulian and Hodkinson. For relation algebras, we can and will, go further. We show the class \(\sf CRRA\) is not closed under \(\equiv_{\infty,\omega}\). In contrast, we show that given \(\alpha\geq \omega\), and an atomic \(\mathfrak{A}\in \mathsf{PEA}_{\alpha}\), then for any \(n/p>en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;4en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectAlgebraic logicen
dc.subjectrelation algebrasen
dc.subjectcylindric algebrasen
dc.subjectpolyadic algebrasen
dc.subjectcomplete representationsen
dc.titleOn Complete Representations and Minimal Completions in Algebraic Logic, Both Positive and Negative Resultsen
dc.typeOther
dc.page.number465-511
dc.contributor.authorAffiliationCairo University, Department of Mathematics, Faculty of Scienceen
dc.identifier.eissn2449-836X
dc.referencesH. Andréka, M. Ferenczi, I. Németi (eds.), Cylindric-like Algebras and Algebraic Logic, Springer Berlin Heidelberg, Berlin, Heidelberg (2013), DOI: https://doi.org/10.1007/978-3-642-35025-2_1en
dc.referencesH. Andréka, I. Németi, T. S. Ahmed, Omitting types for finite variable fragments and complete representations of algebras, Journal of Symbolic Logic, vol. 73(1) (2008), pp. 65–89, DOI: https://doi.org/10.2178/jsl/1208358743en
dc.referencesA. Daigneault, J. Monk, Representation Theory for Polyadic algebras, Fundamenta Informaticae, vol. 52 (1963), pp. 151–176, DOI: https://doi.org/10.4064/fm-52-2-151-176en
dc.referencesM. Ferenczi, The Polyadic Generalization of the Boolean Axiomatization of Fields of Sets, Transactions of the American Mathematical Society, vol. 364(2) (2012), pp. 867–886, DOI: https://doi.org/10.2307/41407800en
dc.referencesM. Ferenczi, A New Representation Theory: Representing Cylindric-like Algebras by Relativized Set Algebras, [in:] H. Andréka, M. Ferenczi, I. Németi (eds.), Cylindric-like Algebras and Algebraic Logic, Springer Berlin Heidelberg, Berlin, Heidelberg (2013), pp. 135–162, DOI: https://doi.org/10.1007/978-3-642-35025-2_7en
dc.referencesM. Ferenczi, Representations of polyadic-like equality algebras, Algebra Universalis, vol. 75(1) (2016), pp. 107–125, DOI: https://doi.org/10.1007/s00012-015-0360-1en
dc.referencesL. Henkin, J. Monk, A. Tarski, Cylindric Algebras Parts I, II, North Holland, Amsterdam (1971).en
dc.referencesR. Hirsch, Relation algebra reducts of cylindric algebras and complete representations, Journal of Symbolic Logic, vol. 72(2) (2007), pp. 673–703, DOI: https://doi.org/10.2178/jsl/1185803629en
dc.referencesR. Hirsch, I. Hodkinson, Complete representations in algebraic logic, Journal of Symbolic Logic, vol. 62(3) (1997), pp. 816–847, DOI: https://doi.org/10.2307/2275574en
dc.referencesR. Hirsch, I. Hodkinson, Relation algebras by games, vol. 147 of Studies in Logic and the Foundations of Mathematics, North Holland, Amsterdam (2002).en
dc.referencesR. Hirsch, I. Hodkinson, Completions and Complete Representations, [in:] H. Andréka, M. Ferenczi, I. Németi (eds.), Cylindric-like Algebras and Algebraic Logic, Springer Berlin Heidelberg, Berlin, Heidelberg (2013), pp. 61–89, DOI: https://doi.org/10.1007/978-3-642-35025-2_4en
dc.referencesR. Hirsch, I. Hodkinson, R. D. Maddux, Relation algebra reducts of cylindric algebras and an application to proof theory, Journal of Symbolic Logic, vol. 67(1) (2002), pp. 197–213, DOI: https://doi.org/10.2178/jsl/1190150037en
dc.referencesR. Hirsch, T. Sayed Ahmed, The neat embedding problem for algebras other than cylindric algebras and for infinite dimensions, The Journal of Symbolic Logic, vol. 79(1) (2014), pp. 208–222, DOI: https://doi.org/10.1017/jsl.2013.20en
dc.referencesI. Hodkinson, Atom structures of cylindric algebras and relation algebras, Annals of Pure and Applied Logic, vol. 89(2) (1997), pp. 117–148, DOI: https://doi.org/10.1016/S0168-0072(97)00015-8en
dc.referencesJ. S. Johnson, Nonfinitizability of classes of representable polyadic algebras, Journal of Symbolic Logic, vol. 34(3) (1969), pp. 344–352, DOI: https://doi.org/10.2307/2270901en
dc.referencesR. D. Maddux, Nonfinite axiomatizability results for cylindric and relation algebras, Journal of Symbolic Logic, vol. 54(3) (1989), pp. 951–974, DOI: https://doi.org/10.2307/2274756en
dc.referencesT. Sayed Ahmed, The class of neat reducts is not elementary, Logic Journal of the IGPL, vol. 9(4) (2001), pp. 593–628, DOI: https://doi.org/10.1093/jigpal/9.4.593en
dc.referencesT. Sayed Ahmed, The class of 2-dimensional neat reducts is not elementary, Fundamenta Mathematicae, vol. 172 (2002), pp. 61–81, DOI: https://doi.org/10.4064/fm172-1-5en
dc.referencesT. Sayed Ahmed, A Modeltheoretic Solution to a Problem of Tarski, Mathematical Logic Quarterly, vol. 48(3) (2002), pp. 343–355, DOI: https://doi.org/10.1002/1521-3870(200204)48:33.0.CO;2-4en
dc.referencesT. Sayed Ahmed, Algebraic Logic, Where Does it Stand Today?, Bulletin of Symbolic Logic, vol. 11(4) (2005), pp. 465–516, DOI: https://doi.org/10.2178/bsl/1130335206en
dc.referencesT. Sayed Ahmed, A Note on Neat Reducts, Studia Logica: An International Journal for Symbolic Logic, vol. 85(2) (2007), pp. 139–151, DOI: https://doi.org/10.2307/40210764en
dc.referencesT. Sayed Ahmed, (RaCA_n) is not elementary for (ngeq 5), Bulletin of the Section of Logic, vol. 37(2) (2008), pp. 123–136.en
dc.referencesT. Sayed Ahmed, Atom-canonicity, relativized representations and omitting types for clique guarded semantics and guarded logics (2013), arXiv:1308.6165.en
dc.referencesT. Sayed Ahmed, Completions, Complete Representations and Omitting Types, [in:] H. Andréka, M. Ferenczi, I. Németi (eds.), Cylindric-like Algebras and Algebraic Logic, Springer Berlin Heidelberg, Berlin, Heidelberg (2013), pp. 205–221, DOI: https://doi.org/10.1007/978-3-642-35025-2_10en
dc.referencesT. Sayed Ahmed, Neat Reducts and Neat Embeddings in Cylindric Algebras, [in:] H. Andréka, M. Ferenczi, I. Németi (eds.), Cylindric-like Algebras and Algebraic Logic, Springer Berlin Heidelberg, Berlin, Heidelberg (2013), pp. 105–131, DOI: https://doi.org/10.1007/978-3-642-35025-2_6en
dc.referencesT. Sayed Ahmed, The class of completely representable polyadic algebras of infinite dimensions is elementary, Algebra Universalis, vol. 72(4) (2014), pp. 371–380, DOI: https://doi.org/10.1007/s00012-014-0307-yen
dc.referencesT. Sayed Ahmed, On notions of representability for cylindric‐polyadic algebras, and a solution to the finitizability problem for quantifier logics with equality, Mathematical Logic Quarterly, vol. 61(6) (2015), pp. 418–477, DOI: https://doi.org/10.1002/malq.201300064en
dc.referencesT. Sayed Ahmed, Splitting methods in algebraic logic: Proving results on non-atom-canonicity, non-finite axiomatizability and non-first oder definability for cylindric and relation algebras (2015), arXiv:1503.02189.en
dc.referencesT. Sayed Ahmed, Atom-canonicity in algebraic logic in connection to omitting types in modal fragments of (L_{omega, omega}) (2016), arXiV:1608.03513.en
dc.contributor.authorEmailrutahmed@gmail.com
dc.identifier.doi10.18778/0138-0680.2021.17
dc.relation.volume50


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0