Abstract
G3 is Gödelian 3-valued logic, G3\(_\text{Ł}^\leq\) is its paraconsistent counterpart and G3\(_\text{Ł}^1\) is a strong extension of G3\(_\text{Ł}^\leq\). The aim of this paper is to endow each one of the logics just mentioned with a 2 set-up binary Routley semantics.