Pokaż uproszczony rekord

dc.contributor.authorGao, Qian
dc.contributor.authorKresta, Aleš
dc.date.accessioned2025-01-29T13:29:55Z
dc.date.available2025-01-29T13:29:55Z
dc.date.issued2024-12-31
dc.identifier.issn2391-6478
dc.identifier.urihttp://hdl.handle.net/11089/54441
dc.description.abstractThe purpose of the article. The application of multi-objective optimization in portfolio management has gained significant attention in asset management. This study aims to uncover the potential advantages of dynamic portfolio optimization using a multi-objective genetic algorithm to address the challenges of ever-changing market conditions.Methodology. By incorporating multi-objective optimization, this paper comprehensively examines three key portfolio objectives: minimizing two risk types and maximizing returns. The approach involves constructing portfolios, initializing the population using the Non-Dominated Sorting Genetic Algorithm II (NSGA-II), and employing crossover and mutation steps to achieve Pareto optimality. Additionally, this study compares the performance of two risk minimization strategies through traditional portfolio backtesting.Results of the research. The results indicate that the multi-objective risk genetic algorithm not only effectively explores the portfolio space but also handles conflicting optimization objectives, thereby enhancing the comprehensiveness and flexibility of investment decisions. However, its performance depended on the chosen risk measurement methods, and the backtesting returns were unstable.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesJournal of Finance and Financial Lawen
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectportfolio optimizationen
dc.subjectrisk measureen
dc.subjectmulti-objectiveen
dc.subjectNSGA-IIen
dc.subjectempirical studyen
dc.titleEmpirical Study of Multi-Objective Risk Portfolio Optimization Based on NSGA-IIen
dc.typeArticle
dc.page.number61-75
dc.contributor.authorAffiliationGao, Qian - Technical University of Ostrava, Faculty of Economics, Department of Financeen
dc.contributor.authorAffiliationKresta, Aleš - Technical University of Ostrava, Faculty of Economics, Department of Financeen
dc.identifier.eissn2353-5601
dc.referencesAlmahdi, S. and Yang, S. Y. (2017). An adaptive portfolio trading system: A risk-return portfolio optimization using recurrent reinforcement learning with expected maximum drawdown. Expert Systems with Applications, 87, pp. 267–279. https://doi.org/10.1016/j.eswa.2017.06.023en
dc.referencesAnagnostopoulos, K. P. and Mamanis, G. (2011). The mean–variance cardinality constrained portfolio optimization problem: An experimental evaluation of five multiobjective evolutionary algorithms. Expert Systems with Applications, 38(11). https://doi.org/10.1016/j.eswa.2011.04.233en
dc.referencesBhagavatula, S. S., Sanjeevi, S. G., Kumar, D. and Yadav, C. K. (2014). Multi-objective indicator based evolutionary algorithm for portfolio optimization. IEEE International Advance Computing Conference (IACC). https://doi.org/10.1109/IAdCC.2014.6779499en
dc.referencesBlank, J. and Deb, K. (2020). Pymoo: Multi-Objective Optimization in Python. IEEE Access, 8, pp. 89497–89509. https://doi.org/10.1109/ACCESS.2020.2990567en
dc.referencesChen, C.-H., Chiang, B.-Y. and Hong, T.-P. (2018). An Approach for Optimizing Group Stock Portfolio Using Multi-Objective Genetic Algorithm. 5th International Conference on Behavioral, Economic, and Socio-Cultural Computing (BESC), pp. 213–215. https://doi.org/10.1109/BESC.2018.8697275en
dc.referencesChiam, S. C., Tan, K. C. and Al Mamum, A. (2008). Evolutionary multi-objective portfolio optimization in practical context. International Journal of Automation and Computing, 5(1), pp. 67–80. https://doi.org/10.1007/s11633-008-0067-2en
dc.referencesCoello, C. A. C., Lamont, G. B. and Veldhuizen, D. A. V. (2007). Evolutionary Algorithms for Solving Multi-Objective Problems. Genetic and Evolutionary Computation Series. Springer US. https://doi.org/10.1007/978-0-387-36797-2en
dc.referencesDeb, K., Pratap, A., Agarwal, S. and Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), pp. 182–197. https://doi.org/10.1109/4235.996017en
dc.referencesDeb, K., Steuer, R. E., Tewari, R. and Tewari, R. (2011). Bi-objective Portfolio Optimization Using a Customized Hybrid NSGA-II Procedure. Evolutionary Multi-Criterion Optimization, pp. 358–373. https://doi.org/10.1007/978-3-642-19893-9_25en
dc.referencesErtenlice, O. and Kalayci, C. B. (2018). A survey of swarm intelligence for portfolio optimization: Algorithms and applications. Swarm and Evolutionary Computation, 39, pp. 36–52. https://doi.org/10.1016/j.swevo.2018.01.009en
dc.referencesFortin, F-A. and Parizeau, M. (2013). Revisiting the NSGA-II crowding-distance computation. Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 623–630. https://doi.org/10.1145/2463372.2463456en
dc.referencesKaucic, M., Moradi, M. and Mirzazadeh, M. (2019). Portfolio optimization by improved NSGA-II and SPEA 2 based on different risk measures. Financial Innovation, 5(1). https://doi.org/10.1186/s40854-019-0140-6en
dc.referencesLiagkouras, K. and Metaxiotis, K. (2018). Handling the complexities of the multi-constrained portfolio optimization problem with the support of a novel MOEA. Journal of the Operational Research Society, 69(10), pp. 1609–1627. https://doi.org/10.1057/s41274-017-0209-4en
dc.referencesLiu, C., Gan, W. and Chen, Y. (2017). Research on Portfolio Optimization Based on Affinity Propagation and Genetic Algorithm. 14th Web Information Systems and Applications Conference (WISA), pp. 122–126. https://doi.org/10.1109/WISA.2017.9en
dc.referencesLou, K. (2023). Optimizing Portfolios with Modified NSGA-II Solutions. 2023 IEEE 3rd International Conference on Data Science and Computer Application (ICDSCA), pp. 375–380. https://doi.org/10.1109/ICDSCA59871.2023.10393316en
dc.referencesMacedo, L. L., Godinho, P. and Alves, M. J. (2017). Mean-semivariance portfolio optimization with multiobjective evolutionary algorithms and technical analysis rules. Expert Systems with Applications, 79, pp. 33–43. https://doi.org/10.1016/j.eswa.2017.02.033en
dc.referencesMarkowitz, H. (1952). Portfolio Selection. The Journal of Finance, 7(1), pp. 77–91. https://doi.org/10.1111/j.1540-6261.1952.tb01525.xen
dc.referencesMeghwani, S. S. and Thakur, M. (2017). Multi-criteria algorithms for portfolio optimization under practical constraints. Swarm and Evolutionary Computation, 37, pp. 104–125. https://doi.org/10.1016/j.swevo.2017.06.005en
dc.referencesMishra, S. K., Panda, G. and Meher, S. (2009). Multi-objective particle swarm optimization approach to portfolio optimization. World Congress on Nature & Biologically Inspired Computing (NaBIC), pp. 1612–1615. https://doi.org/10.1109/NABIC.2009.5393659en
dc.referencesPal, R., Chaudhuri, T. D. and Mukhopadhyay, S. (2021). Portfolio formation and optimization with continuous realignment: A suggested method for choosing the best portfolio of stocks using variable length NSGA-II. Expert Systems with Applications, 186. https://doi.org/10.1016/j.eswa.2021.115732en
dc.referencesYang, X. (2006). Improving Portfolio Efficiency: A Genetic Algorithm Approach. Computational Economics, 28(1), pp. 1–14. https://doi.org/10.1007/s10614-006-9021-yen
dc.referencesZhou, Y., Chen, W. and Lin, D. (2022). Design of Optimum Portfolio Scheme Based on Improved NSGA-II Algorithm. Computational Intelligence and Neuroscience. https://doi.org/10.1155/2022/7419500en
dc.contributor.authorEmailGao, Qian - qian.gao@vsb.cz
dc.contributor.authorEmailKresta, Aleš - ales.kresta@vsb.cz
dc.identifier.doi10.18778/2391-6478.S1.2024.04


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0