Show simple item record

dc.contributor.authorKrawczyk, Jan
dc.date.accessioned2025-11-03T07:44:49Z
dc.date.available2025-11-03T07:44:49Z
dc.date.issued2025-09-30
dc.identifier.issn2391-6478
dc.identifier.urihttp://hdl.handle.net/11089/56572
dc.description.abstractThe purpose of the article. The main objective of this article is to compare the results of data analysis regarding gold prices and their determinants using two approaches: a classical econometric model and Microsoft Copilot, which integrates advanced artificial intelligence technologies, including the GPT-4 language model (Generative Pre-trained Transformer 4). The secondary objective is to identify, based on the existing literature, the main factors influencing fluctuations in gold prices. These include: the price of crude oil, the USD/EUR exchange rate, the S&P 500 index, and the Consumer Price Index (CPI) in the United States.Methodology. The empirical study involves determining the descriptive statistics of the analyzed variables, the correlation matrix, and estimating the structural parameters of the model explaining the gold price.Results of the research. The best results were obtained for the logarithmic returns of the analyzed variables. In line with the stated hypotheses, there is a negative relationship between the gold price and changes in the S&P 500 index, a negative relationship between the gold price and changes in the US$/EUR exchange rate, and a positive relationship between the gold price and the CPI. The study shows that, during the analyzed period (02.2004–11.2023), changes in crude oil prices did not have a statistically significant impact on gold price changes. To obtain data analysis results using Microsoft Copilot, a "chat" session was conducted. The responses provided the following information: proposed determinants of gold prices, a list of scientific articles, and R code to perform the auto.arima procedure. A comparison was made between the model incorporating economic theory-based factors and the model from the auto.arima procedure suggested by Microsoft Copilot. Based on the conducted study, it can be concluded that the model incorporating both autoregressive factors and other gold price determinants better explains the analyzed variable.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesJournal of Finance and Financial Law;47en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectgold priceen
dc.subjecteconometric modelen
dc.subjectgold price determinantsen
dc.subjectGPTen
dc.titleGPT Models or Econometric Models: A Comparative Analysis of Gold Price Determinantsen
dc.typeArticle
dc.page.number129-157
dc.contributor.authorAffiliationWrocław University of Science and Technologyen
dc.identifier.eissn2353-5601
dc.referencesAmini, A., Kalantari R. (2024). Gold price prediction by a CNN-Bi-LSTM model along with automatic parameter tuning. PLoS ONE 19(3). https://doi.org/10.1371/journal.pone.0298426en
dc.referencesBankier.pl – https://www.bankier.pl/en
dc.referencesBorkowski, B., Dudek H., Szczęsny W. (2007). Ekonometria. wybrane zagadnienia. Wydawnictwo Naukowe PWN.en
dc.referencesBukowski, S.I. (2016). The main determinants of gold price in the international market. International Business and Global Economy, Tom 35/1, 402–413. https://doi.org/10.4467/23539496IB.16.029.5610en
dc.referencesChoong, P., Kwoo, P., Piong, C., Wong, W. (2012). Determinants of Gold Price: Using Simple and Multiple Linear Regression. Universiti Tunku Abdul Rahman, 1–99.en
dc.referencesChudy-Hyski, D. (2006). Ocena wybranych uwarunkowań rozwoju funkcji turystycznej obszaru. Infrastruktura i Ekologia Terenów Wiejskich, 2/1.en
dc.referencesGreene W.H. (2002). Econometric analysis, 5th edition, Pearson.en
dc.referencesGretl software – https://gretl.sourceforge.net/en
dc.referencesGuha, B., Bandyopadhyay, G. (2016). Gold price forecastin using ARIMA model. Journal of Advanced Management Science, vol. 4, no. 2., 117–121. http://dx.doi.org/10.12720/joams.4.2.117-121en
dc.referencesIsmail, Z., Yahya, A., Shabri, A. (2009). Forecasting gold prices using multiple linear regression method. American Journal of Applied Sciences, vol. 6 (8), 1509–1514. https://doi.org/10.3844/ajassp.2009.1509.1514en
dc.referencesJabeur, S.B., Mefteh-Wali, S., Viviani, J.L. (2021). Forecasting gold price with the XGBoost algorithm and SHAP interaction values. Annals of Operations Research, vol. 334, 679–699. https://link.springer.com/article/10.1007/s10479-021-04187-wen
dc.referencesLevin, E.J., Wright, R.E. (2006). Short-run and long-run determinants of the price of gold. World Gold Council, Research Study no. 32.en
dc.referencesLivieris, I.E., Pintelas, E., Pintelas, P. (2020). A CNN–LSTM model for gold price time-series forecasting. Neural Comput & Applic, vol. 32, 17351–17360. https://link.springer.com/article/10.1007/s00521-020-04867-xen
dc.referencesMaddala, G.S. (2001). Introduction to econometrics, 3rd edition. Wiley India, ISBN: 9788126510955.en
dc.referencesMakalala, D., Li, Z. (2021). Prediction of gold price with ARIMA and SVM. Journal of Physics: Conference Series, vol. 1767. http://dx.doi.org/10.1088/1742-6596/1767/1/012022en
dc.referencesPolyus https://sustainability.polyus.com/en/esg_data_and_reports/en
dc.referencesPuci, J., Demi, A., Pjeshka, A. (2022). The effect of the S&P500 on gold prices. Journal of Financial and Monetary Economics, vol. 10, 308–313.en
dc.referencesSetyowibowo, S., As’ad, M., Sujito, S., Farida, E. (2021). Forecasting of daily gold price using ARIMA-GARCH hybrid model. Jurnal Ekonomi Pembangunan, vol. 19, 257–270. https://www.researchgate.net/publication/358593313_Forecasting_of_Daily_Gold_Price_using_ARIMA-GARCH_Hybrid_Modelen
dc.referencesVerbeek, M. (2012). A guide to modern econometrics, 4th Edition, John Wiley & Sons, Ltd.en
dc.referencesYang, X. (2019). The prediction of gold price using ARIMA model. 2nd International Conference on Social Science, Public Health and Education. http://dx.doi.org/10.2991/ssphe-18.2019.66en
dc.referencesZhang, P., Ci, B. (2020). Deep belief network for gold price forecasting. Resources Policy, vol. 69. http://dx.doi.org/10.1016/j.resourpol.2020.101806en
dc.contributor.authorEmailjankraw9@gmail.com
dc.identifier.doi10.18778/2391-6478.3.47.08
dc.relation.volume3


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0