Show simple item record

dc.contributor.authorPlisiecki, Hubert
dc.contributor.authorKwiatkowska, Agnieszka
dc.date.accessioned2024-12-03T07:17:57Z
dc.date.available2024-12-03T07:17:57Z
dc.date.issued2024-11-30
dc.identifier.urihttp://hdl.handle.net/11089/53844
dc.description.abstractThe increasing volume of large, multi-thematic text corpora in social sciences presents a challenge in selecting relevant documents for qualitative and mixed-methods research. Traditional sample selection methods require extensive manual coding or prior dataset knowledge, while unsupervised methods can yield inconsistent results with theory-driven coding. To address this, we propose purposive semantic sampling – a Natural Language Processing approach using document-level embeddings created by a weighted average of word vectors with term frequency-inverse document frequency (tf-idf). We demonstrate its effectiveness using the example of democracy, a complex topic difficult to retrieve from parliamentary corpora. This method applies to any multi-thematic research area within big data, offering a reliable, efficient sample selection method for social research texts. Our contribution includes validating this NLP approach for social sciences and humanities as well as providing a robust tool for researchers, facilitating deeper qualitative analysis and exploration of big data corpora within the computational grounded theory framework.en
dc.description.abstractWzrastająca liczba dużych, wielotematycznych korpusów tekstowych w naukach społecznych stwarza wyzwanie w doborze odpowiednich dokumentów do badań jakościowych i mieszanych. Tradycyjne metody doboru próby wymagają intensywnego kodowania manualnego lub uprzedniej wiedzy o zbiorze danych, podczas gdy metody nienadzorowane mogą dawać wyniki niespójne z kodowaniem opartym na teorii. Aby temu zaradzić, autorzy proponują semantyczny dobór celowy próby – podejście wykorzystujące przetwarzanie języka naturalnego z użyciem osadzeń dokumentów tworzonych przez średnią ważoną wektorów słów, z wagami określonymi współczynnikiem tf-idf (częstość terminu odwrotnie proporcjonalna do częstości dokumentu). Skuteczność podejścia zademonstrowano na przykładzie demokracji – złożonego tematu, trudnego do wydobycia z korpusów parlamentarnych. Proponowana metoda pozwala na niezawodny i efektywny dobór próby tekstów w dowolnej dziedzinie badań korzystającej z Big Data. Wkład autorów obejmuje walidację tego podejścia NLP dla nauk społecznych i humanistycznych oraz dostarczenie rzetelnego narzędzia dla badaczy, ułatwiającego pogłębioną analizę jakościową i eksplorację korpusów Big Data w ramach obliczeniowej teorii ugruntowanej.pl
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesPrzegląd Socjologii Jakościowej;4pl
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectsample selectionen
dc.subjectpurposive samplingen
dc.subjectqualitative researchen
dc.subjectword embeddingsen
dc.subjectdemocracyen
dc.subjectdobór próbypl
dc.subjectdobór celowypl
dc.subjectbadania jakościowepl
dc.subjectword embeddingspl
dc.subjectdemokracjapl
dc.titleDiscovering Representations of Democracy in Big Data: Purposive Semantic Sample Selection for Qualitative and Mixed-Methods Researchen
dc.title.alternativeOdkrywanie reprezentacji demokracji w Big Data: semantyczny dobór celowy próby do badań jakościowych i mieszanychpl
dc.typeArticle
dc.page.number18-43
dc.contributor.authorAffiliationPlisiecki, Hubert - Polish Academy of Sciences, Poland; Uniwersytet SWPSen
dc.contributor.authorAffiliationKwiatkowska, Agnieszka - European University Institute, Italy; SWPS University, Polanden
dc.identifier.eissn1733-8069
dc.referencesAlbaugh Quinn, Sevenans Julie, Soroka Stuart, Loewen Peter J. (2013), The Automated Coding of Policy Agendas: A Dictionary-Based Approach, “Paper presented at the 6th Annual Comparative Agendas Conference”, Antwerp, Belgium, June 27–29.en
dc.referencesBack Hanna, Debus Marc, Fernandes Jorge M. (eds.) (2021), The Politics of Legislative Debates, Oxford: Oxford University Press.en
dc.referencesBaden Christian, Pipal Christian, Schoonvelde Martijn, Velden Mariken van der (2022), Three gaps in computational text analysis methods for social sciences: a research agenda, “Communication Methods and Measures”, vol. 16(1), pp. 1–18.en
dc.referencesBeer Caroline (2009), Democracy and gender equality, “Studies in Comparative International Development”, vol. 44, pp. 212–227.en
dc.referencesBischof Jonathan, Airoldi Edoardo M. (2012), Summarizing topical content with word frequency and exclusivity, [in:] John Langford, Joelle Pineau (eds.), Proceedings of the 29th International Conference on Machine Learning, Madison: Omnipress, pp. 9–16.en
dc.referencesBlei David M., Ng Andrew Y., Jordan Michael I. (2003), Latent Dirichlet Allocation, “Journal of Machine Learning Research”, vol. 3, pp. 993–1022.en
dc.referencesBlum Avrim, Mitchell Tom (1998), Combining labeled and unlabeled data with co-training, [in:] Peter Barlett (ed.), Proceedings of the 11th Annual Conference on Computational Learning Theory, New York: ACM, pp. 92–100.en
dc.referencesBoix Carles (2003), Democracy and Redistribution, Cambridge: Cambridge University Press.en
dc.referencesCarlsen Hjalmar, Ralund Snorre (2022), Computational grounded theory revisited: From computer-led to computer-assisted text analysis, “Big Data and Society”, vol. 9(1), pp. 1–16.en
dc.referencesCeka Besir, Magalhães Pedro C. (2020), Do the rich and the poor have different conceptions of democracy? Socioeconomic status, inequality, and the political status quo, “Comparative Politics”, vol. 52(3), pp. 383–412.en
dc.referencesCharmaz Kathy (2006), Constructing Grounded Theory: A Practical Guide through Qualitative Analysis, London: Sage Publications.en
dc.referencesCoffé Hilde, Michels Ank (2014), Education and Support for Representative, Direct and Stealth Democracy, “Electoral Studies”, vol. 35(1), pp. 1–11.en
dc.referencesCoppedge Michael, Altman David, Fish Steven, Kroenig Matthew, McMann Kelly M., Gerring John, Bernhard Michael, Hicken Allen, Lindberg Staffan I. (2011), Conceptualizing and measuring democracy: A new approach, “Perspectives on Politics”, vol. 9(2), pp. 247–267.en
dc.referencesCunningham Frank (2002), Theories of Democracy: A Critical Introduction, London: Routledge.en
dc.referencesDalton Richard J., Shin Doh Chull, Jou Willy (2007), Popular Conceptions of the Meaning of Democracy: Democratic Understanding in Unlikely Places, Irvine: Center for the Study of Democracy.en
dc.referencesDeterding Nicole M., Waters Mary C. (2021), Flexible coding of in-depth interviews: A twenty-first-century approach, “Sociological Methods & Research”, vol. 50(2), pp. 708–739.en
dc.referencesDevlin Jacob, Chang Ming-Wei, Lee Kenton, Toutanova Kristina (2019), Bert: Pre-training of deep bidirectional transformers for language understanding, [in:] Jill Burstein, Christy Doran, Thamar Solorio (eds.), ACL Anthology, Minneapolis: ACL, pp. 4171–4186.en
dc.referencesDieng Adji B., Ruiz Francisco J.R., Blei David M. (2020), Topic modeling in embedding spaces, “Transactions of the Association for Computational Linguistics”, vol. 8, pp. 439–453.en
dc.referencesDryzek John S. (1996), Political inclusion and the dynamics of democratization, “American Political Science Review”, vol. 90(3), pp. 475–487.en
dc.referencesElster Jon, Offe Claus, Preuss Ulrich K. (1998), Institutional Design in Post-Communist Societies: Rebuilding the Ship at Sea, Cambridge: Cambridge University Press.en
dc.referencesErjavec Tomaž, Ogrodniczuk Maciej, Osenova Petya, Ljubešić Nikola, Simov Kiril, Pančur Andrej, Rudolf Michał, Kopp Matyáš, Barkarson Starkaður, Steingrímsson Steinþór, Çöltekin Çağrı, Does Jesse de, Depuydt Katrien, Agnoloni Tommaso, Venturi Giulia, Pérez María Calzada, Macedo Luciana D. de, Navarretta Costanza, Luxardo Giancarlo, Coole Matthew, Rayson Paul, Morkevičius Vaidas, Krilavičius Tomas, Darǵis Roberts, Ring Orsolya, Heusden Ruben van, Marx Maarten, Fišer Darja (2023), The ParlaMint corpora of parliamentary proceedings, “Language Resources and Evaluation”, vol. 57, pp. 415–448.en
dc.referencesFerrín Mónica, Kriesi Hanspeter (eds.) (2016), How Europeans View and Evaluate Democracy, Oxford: Oxford University Press.en
dc.referencesFoster Ian, Ghani Rayid, Jarmin Ron S., Kreuter Frauke, Laneet Julia (eds.) (2021), Big Data and Social Science: Data Science Methods and Tools for Research and Practice, Boca Raton: CRC Press.en
dc.referencesFreedom House (2022), Freedom in the World. The Global Expansion of Authoritarian Rule, Washington: Freedom House.en
dc.referencesGillick Daniel, Presta Alessandro, Tomar Gaurav Singh (2018), End-to-End Retrieval in Continuous Space, https://arxiv.org/abs/1811.08008 [accessed: 21.02.2024].en
dc.referencesGlaser Barney G., Strauss Anselm L. (1999), The Discovery of Grounded Theory: Strategies for Qualitative Research, New York: Aldine.en
dc.referencesGuo Jiafeng, Cai Yinqiong, Fan Yixing, Sun Fei, Zhang Ruqing, Zhang Cheng (2022), Semantic models for the first-stage retrieval: A comprehensive review, “ACM Transactions on Information Systems (TOIS)”, vol. 40(4), pp. 1–42. Houle Christian (2015), Ethnic inequality and the dismantling of democracy: A global analysis, “World Politics”, vol. 67(3), pp. 469–505.en
dc.referencesIlie Cornelia (2015), Parliamentary discourse, [in:] Karen Tracy (ed.), The International Encyclopedia of Language and Social Interaction, New Jersey: Wiley-Blackwell, pp. 1–15.en
dc.referencesJemielniak Dariusz (2020), Thick Big Data: Doing Digital Social Sciences, Oxford: Oxford University Press.en
dc.referencesKatz Richard S. (2001), Models of Democracy: Elite Attitudes and the Democratic Deficit in the European Union, “European Union Politics”, vol. 2(2), pp. 53–79.en
dc.referencesKherwa Pooja, Bansal Poonam (2019), Topic modeling: a comprehensive review, “EAI Endorsed Transactions on Scalable Information Systems”, vol. 7(24), 159623.en
dc.referencesKnutsen Carl Henrik, Wegmann Simone (2016), Is democracy about redistribution?, “Democratization”, vol. 23(1), pp. 164–192. Krippendorff Klaus (2018), Content Analysis: An Introduction to its Methodology, London: Sage.en
dc.referencesKwiatkowska Agnieszka (2017), “Hańba w Sejmie” – zastosowanie modeli generatywnych do analizy debat parlamentarnych, “Przegląd Socjologii Jakościowej”, vol. XIII, no. 2, pp. 82–109.en
dc.referencesKwiatkowska Agnieszka, Grzybowska-Walecka Katarzyna (2024 forthcoming), Polarized Democracy: Diverging Attitudes towards Democracy in Poland, [in:] Katarzyna Grzybowska-Walecka, Simona Guerra, Fernando Casal Bértoa (eds.), The Oxford Handbook of Polish Politics, Oxford: Oxford University Press.en
dc.referencesKwiatkowska Agnieszka, Muliavka Viktoriia, Plisiecki Hubert (2023), Hollowed or redefined? Changing visions of democracy in the political discourse of Law and Justice, “Democratization”, vol. 30(3), pp. 458–478.en
dc.referencesLehmann Pola, Franzmann Simon, Al-Gaddooa Denise, Burst Tobias, Ivanusch Christoph, Regel Sven, Riethmüller Felicia, Volkens Andrea, Weßels Bernhard, Zehnter Lisa (2024), Manifesto Project Dataset (version 2024a), Berlin: Wissenschaftszentrum Berlin für Sozialforschung, https://doi.org/10.25522/manifesto.mpds.2024aen
dc.referencesLevitsky Steven, Ziblatt Daniel (2018), How Democracies Die, New York: Crown Publishing.en
dc.referencesLorenzini Jasmine, Kriesi Hanspeter, Makarov Peter, Wüest Bruno (2022), Protest event analysis: Developing a semiautomated NLP approach, “American Behavioral Scientist”, vol. 66(5), pp. 555–577.en
dc.referencesLourenço Rui Pedro, Piotrowski Suzanne, Ingrams Alex (2017), Open data driven public accountability, “Transforming Government: People, Process and Policy”, vol. 11(1), pp. 42–57.en
dc.referencesLyrio Maurício Vasconcellos Leão, Lunkes Rogério João, Castelló Taliani Emma (2018), Thirty Years of Studies on Transparency, Accountability, and Corruption in the Public Sector: The State of the Art and Opportunities for Future Research, “Public Integrity”, vol. 20(5), pp. 512–533.en
dc.referencesMarkowski Radosław, Kwiatkowska Agnieszka (2018), The Political Impact of the Global Economic Crisis in Poland: Delayed and Indirect Effects, “Historical Social Research”, vol. 43(4), pp. 250–273.en
dc.referencesMeijer Albert Jacob (2003), Transparent government: Parliamentary and legal accountability in an information age, “Information Polity”, vol. 8(1–2), pp. 67–78.en
dc.referencesMeijer Harm Jan, Truong Joanne, Karimi Reza (2021), Document Embedding for Scientific Articles: Efficacy of Word Embeddings vs TFIDF, https://arxiv.org/abs/2107.05151 [accessed: 21.05.2024].en
dc.referencesMikolov Tomas, Kai Chen, Greg Corrado, Jeffrey Dean (2013a), Efficient Estimation of Word Representations in Vector Space, https://arxiv.org/abs/1301.3781 [accessed: 21.05.2024].en
dc.referencesMikolov Tomas, Sutskever Ilya, Chen Kai, Corrado Greg, Dean Jeffrey (2013b), Distributed Representations of Words and Phrases and their Compositionality, https://arxiv.org/abs/1310.4546 [accessed: 21.05.2024].en
dc.referencesMiłkowski Marcin (2022), Morfologik software, version 2.1.6, https://github.com/morfologik/morfologik-stemming/releases [accessed: 21.05.2024].en
dc.referencesMunck Gerardo L., Verkuilen Jay (2002), Conceptualizing and measuring democracy: Evaluating alternative indices, “Comparative Political Studies”, vol. 35(1), pp. 5–34.en
dc.referencesNelson Laura K. (2020), Computational Grounded Theory: A Methodological Framework, “Sociological Methods & Research”, vol. 49(1), pp. 3–42.en
dc.referencesNicholls Tom, Culpepper Pepper D. (2021), Computational identification of media frames: Strengths, weaknesses, and opportunities, “Political Communication”, vol. 38(1–2), pp. 159–181.en
dc.referencesNieuwelink Hessel, Dam Geert ten, Dekker Paul (2018), Growing into politics? The development of adolescents’ views on democracy over time, “Politics”, vol. 38(4), pp. 395–410.en
dc.referencesPatton Michael Quinn (2014), Qualitative Research & Evaluation Methods: Integrating Theory and Practice, London: Sage Publications.en
dc.referencesPlisiecki Hubert (2024), Package retfidf. Document Retrieval for Social Sciences, https://pypi.org/project/retfidf/ [accessed: 21.05.2024].en
dc.referencesPlisiecki Hubert, Kwiatkowska Agnieszka (2022), Finding democracy in big data: word-embedding-based document retrieval. Dataset, https://osf.io/rk6pc [accessed: 21.05.2024].en
dc.referencesRauh Christian, Schwalbach Jan (2020), The ParlSpeech V2 data set: Full-text corpora of 6.3 million parliamentary speeches in the key legislative chambers of nine representative democracies, https://doi.org/10.7910/DVN/L4OAKNen
dc.referencesRoberts Margaret E., Stewart Brandon M., Tingley Dustin, Lucas Christopher, Leder-Luis Jetson, Kushner Gadarian Shana, Albertson Bethany, Rand David G. (2014), Structural topic models for open-ended survey responses, “American Journal of Political Science”, vol. 58(4), pp. 1064–1082.en
dc.referencesSack Benjamin C. (2017), Regime change and the convergence of democratic value orientations through socialization. Evidence from reunited Germany, “Democratization”, vol. 24(3), pp. 444–462.en
dc.referencesSaldaña Johnny (2021), The Coding Manual for Qualitative Researchers, London: Sage Publications.en
dc.referencesSchmidt Craig W. (2019), Improving a tf-idf weighted document vector embedding, https://arxiv.org/abs/1902.09875 [accessed: 21.05.2024].en
dc.referencesSchönhofen Peter (2009), Identifying document topics using the Wikipedia category network, “Web Intelligence and Agent Systems: An International Journal”, vol. 7(2), pp. 195–207.en
dc.referencesSchou Jannick, Hjelholt Morten (2018), Digitalization and Public Sector Transformations, Cham: Palgrave Macmillan.en
dc.referencesSchwörer Jakob, Koß Michael (2023), ‘Void’ democrats? The populist notion of ‘democracy’ in action, “Party Politics”, https://doi. org/10.1177/13540688231200992en
dc.referencesScott Mike, Tribble Christopher (2006), Textual Patterns: Key Words and Corpus Analysis in Language Education, Philadelphia: John Benjamins.en
dc.referencesShaw Sylvia (2000), Language, gender and floor apportionment in political debates, “Discourse & Society”, vol. 11(3), pp. 401–418. Varieties of Democracy (2022), Dataset v14 [Country-Year/Country-Date]. VoD Project, https://doi.org/10.23696/mcwt-fr58en
dc.referencesVoermans Wim, Napel Hans-Martien ten, Passchier Reijer (2015), Combining efficiency and transparency in legislative processes, “The Theory and Practice of Legislation”, vol. 3(3), pp. 279–294.en
dc.referencesWang Di, Thint Marcus, Al-Rubaie Ahmad (2012), Semi-supervised Latent Dirichlet Allocation and its application for document classification, [in:] Li Yuefeng, Zhang Yanqing, Zhong Ning (eds), 2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology, Los Alamitos: CPS, pp. 306–310.en
dc.referencesWatanabe Kohei, Zhou Yuan (2022), Theory-driven analysis of large corpora: Semisupervised topic classification of the UN speeches, “Social Science Computer Review”, vol. 40(2), pp. 346–366.en
dc.referencesWodak Ruth, Krzyżanowski Michal (eds.) (2008), Qualitative Discourse Analysis in the Social Sciences, London: Palgrave MacMillan.en
dc.referencesWolf Thomas, Debut Lysandre, Sanh Victor, Chaumond Julien, Delangue Clement, Moi Anthony, Cistac Pierric, Rault Tim, Louf Remi, Funtowicz Morgan, Davison Joe, Shleifer Sam, Platen Patrick von, Ma Clara, Jernite Yacine, Plu Julien, Xu Canwen, Le Scao Teven, Gugger Sylvain, Drame Mariama, Lhoest Quentin, Rush Alexander (2020), Transformers: State-of-the-art natural language processing, [in:] Liu Qun, Schlangen David (eds.), Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, Minneapolis: ACL, pp. 38–45.en
dc.referencesXian Jasper, Teofili Tommaso, Pradeep Ronak, Lin Jimmy (2024), Vector search with OpenAI embeddings: Lucene is all you need, [in:] Proceedings of the 17th ACM International Conference on Web Search and Data Mining, New York: ACM, pp. 1090–1093.en
dc.referencesYamamoto Hironori (ed.) (2007), Tools for Parliamentary Oversight: A Comparative Study of 88 National Parliaments, Geneve: Inter-Parliamentary Union.en
dc.referencesYoung Iris Marion (2002), Inclusion and Democracy, Oxford: Oxford University Press.en
dc.contributor.authorEmailPlisiecki, Hubert - hplisiecki@gmail.com
dc.contributor.authorEmailKwiatkowska, Agnieszka - agn.kwiatkowska@swps.edu.pl
dc.identifier.doi10.18778/1733-8069.20.4.02
dc.relation.volume20


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0