Show simple item record

dc.contributor.authorKrzyśko, Mirosław
dc.contributor.authorSmaga, Łukasz
dc.date.accessioned2018-02-28T11:45:02Z
dc.date.available2018-02-28T11:45:02Z
dc.date.issued2018
dc.identifier.issn0208-6018
dc.identifier.urihttp://hdl.handle.net/11089/24165
dc.description.abstractIn this paper, the binary classification problem of multi‑dimensional functional data is considered. To solve this problem a regression technique based on functional logistic regression model is used. This model is re‑expressed as a particular logistic regression model by using the basis expansions of functional coefficients and explanatory variables. Based on re‑expressed model, a classification rule is proposed. To handle with outlying observations, robust methods of estimation of unknown parameters are also considered. Numerical experiments suggest that the proposed methods may behave satisfactory in practice.en_GB
dc.description.abstractW niniejszym artykule rozważany jest problem dwuetykietowej klasyfikacji wielowymiarowych danych funkcjonalnych. Zaproponowane rozwiązanie tego problemu oparto na technikach regresyjnych i modelu regresji logistycznej dla danych funkcjonalnych. Model ten został przekształcony do szczególnego modelu regresji logistycznej za pomocą rozwinięcia (będących funkcjami) współczynników regresji i zmiennych objaśniających w bazie funkcyjnej. Na podstawie tego modelu skonstruowana została reguła klasyfikacyjna. W przypadku występowania obserwacji odstających rozważane są również metody odpornej estymacji nieznanych parametrów. Eksperymenty numeryczne sugerują, że proponowane metody mogą z powodzeniem być wykorzystane w praktycznych zagadnieniach.pl_PL
dc.language.isoplen_GB
dc.publisherWydawnictwo Uniwersytetu Łódzkiegoen_GB
dc.relation.ispartofseriesActa Universitatis Lodziensis. Folia Oeconomica;334
dc.subjectbasis functions representationen_GB
dc.subjectclassification problemen_GB
dc.subjectfunctional regression analysisen_GB
dc.subjectlogistic regression modelen_GB
dc.subjectmulti‑dimensional functional dataen_GB
dc.subjectrobust estimationen_GB
dc.subjectanaliza regresji dla danych funkcjonalnychpl_PL
dc.subjectestymacja odpornapl_PL
dc.subjectmodel regresji logistycznejpl_PL
dc.subjectrozwinięcie funkcji w bazie funkcyjnejpl_PL
dc.subjectwielowymiarowe dane funkcjonalnepl_PL
dc.subjectzagadnienie klasyfikacjipl_PL
dc.titleSelected Robust Logistic Regression Specification for Classification of Multi‑dimensional Functional Data in Presence of Outlieren_GB
dc.title.alternativeZastosowanie odpornej regresji logistycznej do klasyfikacji wielowymiarowych danych funkcjonalnychpl_PL
dc.typeArticleen_GB
dc.rights.holder© Copyright by Authors, Łódź 2018; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2018en_GB
dc.page.number[53]-66
dc.contributor.authorAffiliationThe President Stanisław Wojciechowski State University of Applied Sciences in Kalisz, Interfaculty Institute of Mathematics and Statistics
dc.contributor.authorAffiliationAdam Mickiewicz University in Poznań, Faculty of Mathematics and Computer Science
dc.identifier.eissn2353-7663
dc.referencesAhmad S., Ramli N.M., Midi H. (2010), Robust estimators in logistic regression: A Comparative simulation study, “Journal of Modern Applied Statistical Methods”, vol. 9, pp. 502–511.pl_PL
dc.referencesBianco A.M., Yohai V.J. (1996), Robust estimation in the logistic regression model, [in:] H. Reider (ed.), Robust statistics, Data analysis and computer intensive methods, Springer Verlag, New York.pl_PL
dc.referencesChiou J.M., Müller H.G., Wang J.L. (2004), Functional response models, “Statistica Sinica”, vol. 14, pp. 675–693.pl_PL
dc.referencesChiou J.M., Yang Y.F., Chen Y.T. (2016), Multivariate functional linear regression and prediction, “Journal of Multivariate Analysis”, vol. 146, pp. 301–312.pl_PL
dc.referencesCollazos J.A.A., Dias R., Zambom A.Z. (2016), Consistent variable selection for functional regression models, “Journal of Multivariate Analysis”, vol. 146, pp. 63–71.pl_PL
dc.referencesCroux C., Haesbroeck G. (2003), Implementing the Bianco and Yohai estimator for logistic regression, “Computational Statistics Data Analysis”, vol. 44, pp. 273–295.pl_PL
dc.referencesFebrero‑Bande M., Galeano P., González‑Manteiga W. (2007), A functional analysis of NO_x levels: location and scale estimation and outlier detection, “Computational Statistics”, vol. 22, pp. 411–427.pl_PL
dc.referencesFebrero‑Bande M., Galeano P., González‑Manteiga W. (2008), Outlier detection in functional data by depth measures, with application to identify abnormal NO_x levels, “Environmetrics”, vol. 19, pp. 331–345.pl_PL
dc.referencesFebrero‑Bande M., Oviedo de la Fuente M. (2012), Statistical computing in functional data analysis: The R package fda.usc, “Journal of Statistical Software”, vol. 51, pp. 1–28.pl_PL
dc.referencesFerraty F., Vieu P. (2006), Nonparametric Functional Data Analysis: Theory and Practice, Springer, New York.pl_PL
dc.referencesGiacofci M., Lambert‑Lacroix S., Marot G., Picard F. (2013), Wavelet‑based clustering for mixed‑effects functional models in high dimension, “Biometrics”, vol. 69, pp. 31–40.pl_PL
dc.referencesGórecki T., Krzyśko M., Wołyński W. (2015), Classification problem based on regression models for multidimensional functional data, “Statistics in Transition New Series”, no. 16, pp. 97–110.pl_PL
dc.referencesGórecki T., Łaźniewska E. (2013), Funkcjonalna analiza składowych głównych PKB, “Wiadomości Statystyczne”, no. 4, pp. 23–34.pl_PL
dc.referencesGórecki T., Smaga Ł. (2015), A comparison of tests for the one‑way ANOVA problem for functional data, “Computational Statistics”, vol. 30, pp. 987–1010.pl_PL
dc.referencesGórecki T., Smaga Ł. (2017), Multivariate analysis of variance for functional data, “Journal of Applied Statistics”, vol. 44, pp. 2172–2189.pl_PL
dc.referencesHorváth L., Kokoszka P. (2012), Inference for Functional Data with Applications, Springer, New York.pl_PL
dc.referencesHubert M., Rousseeuw P.J., Segaert P. (2015), Multivariate functional outlier detection, “Statistical Methods Applications”, vol. 24, pp. 177–202.pl_PL
dc.referencesJames G.H., Hastie T.J. (2001), Functional linear discriminant analysis for irregularly sampled curves, “Journal of the Royal Statistical Society: Series B (Statistical Methodology)”, vol. 63, pp. 533–550.pl_PL
dc.referencesJaworski S., Pietrzykowski R. (2014), Spatial comparison of the level and rate of change of farm income in the years 2004–2012, “Acta Universitatis Lodziensis, Folia Oeconomica”, no. 307, pp. 29–44.pl_PL
dc.referencesKayano M., Konishi S. (2009), Functional principal component analysis via regularized Gaussian basis expansions and its application to unbalanced data, “Journal of Statistical Planning and Inference”, vol. 139, pp. 2388–2398.pl_PL
dc.referencesKrzyśko M., Waszak Ł. (2013), Canonical correlation analysis for functional data, “Biometrical Letters”, no. 50, pp. 95–105.pl_PL
dc.referencesKrzyśko M., Wołyński W. (2009), New variants of pairwise classification, “European Journal of Operational Research”, vol. 199, pp. 512–519.pl_PL
dc.referencesKrzyśko M., Wołyński W., Górecki T., Skorzybut M. (2008), Learning Systems, WNT, Warsaw.pl_PL
dc.referencesKünsch H.R., Stefanski L.A., Carroll R.J. (1989), Conditionally unbiased bounded influence estimation in general regression models, with applications to generalized linear models, “Journal of American Statistical Association”, vol. 84, pp. 460–466.pl_PL
dc.referencesMaechler M., Rousseeuw P., Croux C., Todorov V., Ruckstuhl A., Salibian‑Barrera A., Verbeke T., Koller M., Conceicao E.L.T., di Palma M.A. (2016), robustbase: Basic Robust Statistics, R package version 0.92–7, http://CRAN.R‑project.org/package=robustbase [accessed: 5.04.2017].pl_PL
dc.referencesMallows C.L. (1975), On some topics in robustness, Bell Telephone Laboratories, Murray Hill.pl_PL
dc.referencesMatsui H., Konishi K. (2011), Variable selection for functional regression models via the L1 regularization, “Computational Statistics Data Analysis”, vol. 55, pp. 3304–3310.pl_PL
dc.referencesOlszewski R.T. (2001), Generalized feature extraction for structural pattern recognition in time‑series data. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, http://www.cs.cmu.edu/~bobski [accessed: 10.04.2017].pl_PL
dc.referencesRamsay J.O., Hooker G., Graves G. (2009), Functional Data Analysis with R and MATLAB, Springer, Berlin.pl_PL
dc.referencesRamsay J.O., Silverman B.W. (2002), Applied Functional Data Analysis. Methods and Case Studies, Springer, New York.pl_PL
dc.referencesRamsay J.O., Silverman B.W. (2005), Functional Data Analysis, 2nd Edition, Springer, New York.pl_PL
dc.referencesRamsay J.O., Wickham H., Graves S., Hooker G. (2014), fda – Functional Data Analysis, R package version 2.4.3, http://CRAN.R‑project.org/package=fda [accessed: 28.01.2017].pl_PL
dc.referencesR Core Team (2017), R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, https://www.R‑project.org/ [accessed: 10.01.2017].pl_PL
dc.referencesRodriguez J.J., Alonso C.J., Maestro J.A. (2005), Support vector machines of interval based features for time series classification, “Knowledge‑Based Systems”, vol. 18, pp. 171–178.pl_PL
dc.referencesRousseeuw P.J. (1985), Multivariate estimation with high breakdown point, [in:] W. Grossmann, G. Pflug, I. Vincze, W. Wertz (eds.), Mathematical Statistics and Applications, vol. B, Reidel, Dordrecht.pl_PL
dc.referencesWang J., Zamar R., Marazzi A., Yohai V., Salibian‑Barrera M., Maronna R., Zivot E., Rocke D., Martin D., Maechler M., Konis K. (2014), robust: Robust Library, R package version 0.4–16, https://CRAN.R‑project.org/package=robust [accessed: 6.04.2017].pl_PL
dc.referencesZhang J.T. (2013), Analysis of Variance for Functional Data, Chapman Hall, London.pl_PL
dc.contributor.authorEmailmkrzysko@amu.edu.pl
dc.contributor.authorEmaills@amu.edu.pl
dc.identifier.doi10.18778/0208-6018.334.04
dc.relation.volume2en_GB
dc.subject.jelC38
dc.subject.jelC13


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record